Effective hybrid attention network based on pseudo-color enhancement in ultrasound image segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 背景(考古学) 图像分割 计算机视觉 计算机网络 语言学 生物 哲学 古生物学
作者
Xuping Huang,Qian Wang,Junxi Chen,Lingna Chen,Zhiyi Chen
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:137: 104742-104742 被引量:12
标识
DOI:10.1016/j.imavis.2023.104742
摘要

Ultrasound image segmentation plays a vital role in the early diagnosis of human diseases. It helps diagnose many diseases, such as breast cancer, hemangioma, and other gynecological disorders. However, the intrinsic imaging characteristics of ultrasound images result in substantially lower resolution and clarity than CT, MRI, and other imaging modalities, and they are sensitive to interference from external influences. With its inherent artifacts, blurred lesion boundaries, and uneven intensity distribution, ultrasound images present a challenging task when it comes to segmenting lesion areas accurately. In recent years, convolutional neural networks (CNNs) have achieved remarkable results in medical image segmentation tasks. However, CNNs are limited in capturing the remote dependencies of the input image, leading to degraded accuracy in segmenting ultrasound lesions. In this paper, we developed a deep convolutional neural network that incorporates the pseudo-color enhancement algorithm and hybrid attention modules that enhance the network’s ability to extract fine features and remote modeling capabilities. We propose a novel multi-scale channel attention-based decoder that efficiently uses the feature maps from the encoder as a complement and fuses them with the upsampled feature maps. The hybrid attention combination captures cross-channel interactions efficiently and enhances the context modeling capability, further improving the extraction of coarse and delicate features, and resulting in significant performance improvements. We found that the dice performance improved by 2.54%, 2.47%, 1.39%, 0.99%, and 1.23% on the BUL, BUSI, Hemangioma, BP, and VUI. Results from four public datasets and one self-collected dataset indicate that the proposed method outperforms other medical image segmentation methods for ultrasound image lesion segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感性的靖仇完成签到,获得积分10
刚刚
夏陌发布了新的文献求助10
1秒前
3秒前
FashionBoy应助畅快的觅风采纳,获得10
5秒前
B养老崔完成签到 ,获得积分10
5秒前
小田完成签到,获得积分10
12秒前
小二郎应助111采纳,获得10
12秒前
乐乐应助蓝草采纳,获得10
14秒前
14秒前
玛奇玛完成签到 ,获得积分10
15秒前
18秒前
orixero应助Kun采纳,获得10
18秒前
斯文败类应助Kun采纳,获得10
18秒前
20秒前
21秒前
冰淇淋啦啦啦完成签到,获得积分20
22秒前
奇异物质发布了新的文献求助10
24秒前
24秒前
Sara完成签到,获得积分10
24秒前
iNk应助prof.zhang采纳,获得10
25秒前
HonS完成签到,获得积分10
25秒前
FashionBoy应助Fiona采纳,获得10
27秒前
27秒前
11完成签到,获得积分10
29秒前
奇异物质完成签到,获得积分20
29秒前
111完成签到,获得积分20
29秒前
29秒前
11发布了新的文献求助10
31秒前
三幅画发布了新的文献求助10
31秒前
手抓饼啊发布了新的文献求助30
33秒前
34秒前
35秒前
36秒前
36秒前
Rain发布了新的文献求助10
37秒前
畅快的觅风完成签到,获得积分10
37秒前
不倦应助乔心采纳,获得10
37秒前
蓝草发布了新的文献求助10
39秒前
粗暴的醉卉完成签到,获得积分10
41秒前
111发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780355
求助须知:如何正确求助?哪些是违规求助? 3325680
关于积分的说明 10223949
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669024
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648