已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning and Artificial Intelligence: A Web-Based Implant Failure and Peri-implantitis Prediction Model for Clinicians

种植周围炎 医学 植入 逻辑回归 牙科 植入物失效 牙种植体 接收机工作特性 人口统计学的 外科 内科学 社会学 人口学
作者
Peter Rekawek,E. Herbst,Abhinav Suri,Brian P. Ford,Chamith S. Rajapakse,Neeraj Panchal
出处
期刊:International Journal of Oral & Maxillofacial Implants [Quintessence Publishing Company]
卷期号:38 (3): 576-582b 被引量:14
标识
DOI:10.11607/jomi.9852
摘要

To develop a machine learning model that can predict dental implant failure and peri-implantitis as a tool for maximizing implant success.This study used a supervised learning model to retrospectively analyze 398 unique patients receiving a total of 942 dental implants presenting at the Philadelphia Veterans Affairs Medical Center from 2006 to 2013. Logistic regression, random forest classifiers, support vector machines, and ensemble techniques were employed to analyze this dataset.The random forest model possessed the highest predictive performance on test sets, with receiver operating characteristic area under curves (ROC AUC) of 0.872 and 0.840 for dental implant failures and peri-implantitis, respectively. The five most important features correlating with implant failure were amount of local anesthetic, implant length, implant diameter, use of preoperative antibiotics, and frequency of hygiene visits. The five most important features correlating with peri-implantitis were implant length, implant diameter, use of preoperative antibiotics, frequency of hygiene visits, and presence of diabetes mellitus.This study demonstrated the ability of machine learning models to assess demographics, medical history, and surgical plans, as well as the influence of these factors on dental implant failure and peri-implantitis. This model may serve as a resource for clinicians in the treatment of dental implants. Int J Oral Maxillofac Implants 2023;38:576-582. doi: 10.11607/jomi.9852.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小章子冰箱完成签到,获得积分10
刚刚
刚刚
1秒前
SciGPT应助Yacon采纳,获得10
1秒前
传奇3应助淡然的念桃采纳,获得10
1秒前
Xxi完成签到,获得积分10
2秒前
薛雨佳发布了新的文献求助10
4秒前
kepler发布了新的文献求助10
5秒前
6秒前
7秒前
星辰大海应助调皮的千万采纳,获得10
9秒前
luvr1发布了新的文献求助10
12秒前
晗月完成签到,获得积分10
15秒前
爱静静应助王大大采纳,获得10
16秒前
zzzzzzz完成签到 ,获得积分10
17秒前
17秒前
SCI完成签到,获得积分10
19秒前
酷波er应助怡然尔白采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
21秒前
WaitP应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
22秒前
生而追梦不止完成签到 ,获得积分10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
没有昵称完成签到 ,获得积分10
22秒前
renyi完成签到 ,获得积分10
23秒前
123完成签到,获得积分10
26秒前
pipi完成签到 ,获得积分10
29秒前
AMENG完成签到,获得积分10
35秒前
斯文败类应助一一采纳,获得30
43秒前
酥瓜完成签到 ,获得积分10
44秒前
我是老大应助巫翩跹采纳,获得10
46秒前
华仔应助deeferf采纳,获得10
47秒前
科研通AI5应助Echo采纳,获得10
48秒前
Eastonlyzhang发布了新的文献求助10
50秒前
大马哈鱼完成签到 ,获得积分10
50秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804061
求助须知:如何正确求助?哪些是违规求助? 3348829
关于积分的说明 10340363
捐赠科研通 3065012
什么是DOI,文献DOI怎么找? 1682831
邀请新用户注册赠送积分活动 808527
科研通“疑难数据库(出版商)”最低求助积分说明 764354