Diffusion-Based Impedance Learning for Contact-Rich Manipulation Tasks

作者
Noah Geiger,Tamim Asfour,Neville Hogan,Johannes Lachner
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2509.19696
摘要

Learning methods excel at motion generation in the information domain but are not primarily designed for physical interaction in the energy domain. Impedance Control shapes physical interaction but requires task-aware tuning by selecting feasible impedance parameters. We present Diffusion-Based Impedance Learning, a framework that combines both domains. A Transformer-based Diffusion Model with cross-attention to external wrenches reconstructs a simulated Zero-Force Trajectory (sZFT). This captures both translational and rotational task-space behavior. For rotations, we introduce a novel SLERP-based quaternion noise scheduler that ensures geometric consistency. The reconstructed sZFT is then passed to an energy-based estimator that updates stiffness and damping parameters. A directional rule is applied that reduces impedance along non task axes while preserving rigidity along task directions. Training data were collected for a parkour scenario and robotic-assisted therapy tasks using teleoperation with Apple Vision Pro. With only tens of thousands of samples, the model achieved sub-millimeter positional accuracy and sub-degree rotational accuracy. Its compact model size enabled real-time torque control and autonomous stiffness adaptation on a KUKA LBR iiwa robot. The controller achieved smooth parkour traversal within force and velocity limits and 30/30 success rates for cylindrical, square, and star peg insertions without any peg-specific demonstrations in the training data set. All code for the Transformer-based Diffusion Model, the robot controller, and the Apple Vision Pro telemanipulation framework is publicly available. These results mark an important step towards Physical AI, fusing model-based control for physical interaction with learning-based methods for trajectory generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xkl完成签到,获得积分10
刚刚
KP完成签到,获得积分10
刚刚
dd发布了新的文献求助10
刚刚
1秒前
Zzz完成签到,获得积分10
1秒前
1秒前
2秒前
xzn完成签到,获得积分10
2秒前
2秒前
阔达的秀发完成签到,获得积分10
2秒前
2秒前
科研通AI6应助优美的翠柏采纳,获得10
2秒前
浮游应助无限的含蕾采纳,获得10
2秒前
紧张的丹云完成签到,获得积分10
3秒前
科目三应助SH采纳,获得10
3秒前
ZYP发布了新的文献求助10
4秒前
4秒前
彭于晏应助迅速的丑采纳,获得10
4秒前
追寻夏兰发布了新的文献求助10
4秒前
杨洋羊完成签到,获得积分20
5秒前
5秒前
5秒前
科研通AI6应助乖乖隆地洞采纳,获得50
6秒前
xu1227发布了新的文献求助10
6秒前
6秒前
光亮的骁完成签到,获得积分10
6秒前
西洲梦发布了新的文献求助10
7秒前
11发布了新的文献求助10
7秒前
Akim应助小小菜鸟芬采纳,获得10
8秒前
Wangyidi完成签到 ,获得积分10
8秒前
廖廖完成签到,获得积分10
8秒前
蟹老板完成签到,获得积分10
9秒前
9秒前
曲凯发布了新的文献求助10
9秒前
科研通AI2S应助Liuzihao采纳,获得10
9秒前
星辰发布了新的文献求助10
10秒前
10秒前
Zzz发布了新的文献求助10
11秒前
11秒前
yufeizhle完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5332778
求助须知:如何正确求助?哪些是违规求助? 4471287
关于积分的说明 13916741
捐赠科研通 4364940
什么是DOI,文献DOI怎么找? 2398042
邀请新用户注册赠送积分活动 1391272
关于科研通互助平台的介绍 1362062