根际细菌
生物肥料
微珠(研究)
食品科学
淀粉
化学
生物量(生态学)
园艺
生物技术
根际
细菌
生物
农学
生物化学
遗传学
作者
Nitu Rani,Gurparteek Kaur,Sukhminderjit Kaur,Sudhir K. Upadhyay,Manikant Tripathi
标识
DOI:10.1016/j.ijbiomac.2023.124381
摘要
In the present farming era, rhizobacteria as beneficial biofertilizers can decrease the negative effects of Zinc (Zn) agrochemicals. However, their commercial viability and utility are constrained by their instability under field conditions. Thus, to enhance their stability, microbial formulations are considered, which will not only offer an appropriate microenvironment, and protection but also ensure a high rate of rhizospheric-colonization. The goal of this study was to create a new formulation for the Zn-solubilizing bacteria E. ludwigii-PS10. The studied formulation was prepared using the extrusion technique, wherein a composite solution containing alginate, starch, zinc oxide, and poultry waste was uniformly mixed with the bacterial strain PS10 to develop low-cost, eco-friendly, and slow-release microbeads. The produced microbead was spherical, and characterized by SEM, FTIR, and XRD. Further, the microbeads were analyzed for their survival stability over 3 months of storage at room temperature and 4 °C. The effect of the microbead on the vegetative growth of tomato plants was investigated. Results showed that 94 % of the encapsulated microbial beads (EMB) matrix was able to encapsulate the bacterial strain PS10. The dried EMB demonstrated a moisture content of 2.87 % and was able to preserve E. ludwigii-PS10 survival at room temperature at the rate of 85.6 %. The application of the microbead to the tomato plants significantly increased plant biomass and Zn content. As a result, our findings support the use of this novel EMB prepared using an alginate/poultry waste/starch mixture to increase bacterial cell viability and plant growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI