Prediction of hematoma expansion using a random forest model with clinical data of patients with intracerebral hemorrhage

格拉斯哥昏迷指数 随机森林 血肿 医学 脑出血 中线偏移 人工智能 麻醉 放射科 计算机科学
作者
Akihiro Taguchi,Samantha Seymour,Ciprian N. Ionita,Kurt Schultz,Ryo Shiroishi
标识
DOI:10.1117/12.2653401
摘要

Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸运幸福完成签到,获得积分10
2秒前
科研通AI5应助伊伊采纳,获得10
2秒前
852应助freq采纳,获得10
6秒前
6秒前
激情的飞凤完成签到,获得积分10
8秒前
默listening完成签到,获得积分10
10秒前
DDD发布了新的文献求助10
12秒前
kathleen完成签到,获得积分10
13秒前
Jasper应助zhu采纳,获得10
19秒前
lll完成签到,获得积分10
21秒前
繁多星发布了新的文献求助10
22秒前
25秒前
Dr大壮发布了新的文献求助10
30秒前
自然的霸发布了新的文献求助10
32秒前
36秒前
36秒前
39秒前
zhu发布了新的文献求助10
40秒前
刘佳发布了新的文献求助10
41秒前
Cee完成签到,获得积分10
42秒前
墨兮完成签到,获得积分10
43秒前
科研通AI5应助Alger采纳,获得10
44秒前
48秒前
50秒前
51秒前
52秒前
简单洋发布了新的文献求助20
54秒前
55秒前
伊伊发布了新的文献求助10
56秒前
Sun发布了新的文献求助30
56秒前
57秒前
唐泽雪穗应助科研通管家采纳,获得10
58秒前
moriaty应助科研通管家采纳,获得10
58秒前
隐形曼青应助科研通管家采纳,获得10
59秒前
大模型应助科研通管家采纳,获得10
59秒前
59秒前
orixero应助科研通管家采纳,获得10
59秒前
唐泽雪穗应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784598
求助须知:如何正确求助?哪些是违规求助? 4111817
关于积分的说明 12720816
捐赠科研通 3836514
什么是DOI,文献DOI怎么找? 2115376
邀请新用户注册赠送积分活动 1138374
关于科研通互助平台的介绍 1024374