Insulator defect detection based on improved you-only-look-once v4 in complex scenarios

计算机科学 稳健性(进化) 绝缘体(电) 特征提取 网格 子空间拓扑 骨干网 卷积神经网络 模式识别(心理学) 人工智能 实时计算 工程类 计算机网络 电气工程 数学 生物化学 化学 几何学 基因
作者
Suzhen Wang,Hao Xu,Mingwei Shao,Lin Zhao
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (02) 被引量:3
标识
DOI:10.1117/1.jei.32.2.023029
摘要

As power grid structure becomes increasingly complex, the impact of the operation status of key substation equipment on the safe and stable operation of the power grid is gradually increasing. Aiming at the problems of dense targets and occlusion recognition difficulties in the complex background of substations, an improved you-only-look-once (YOLO) v4 insulator defect detection algorithm is proposed. A large number of insulator and defect datasets were collected from the Internet. We use MobileNet-v2 to replace the backbone network of YOLOv4, and in view of the problem that the accuracy of YOLOv4 target detection model is not high for small targets or dense targets, convolutional block attention module (CBAM) attention mechanism is added to the backbone network to enhance the feature extraction ability, and ultra-lightweight subspace attention module (ULSAM) is added to the detection head to learn the cross-channel information. Experiments based on InDataset show that the insulator defect detection algorithm based on deep learning proposed achieves a high detection accuracy and detection speed; the mean average precision of the improved YOLOv4 model is 87.48%, and the recall rate of insulator defects reaches 79.84%, which meets the requirements of robustness and accuracy of insulator defect detection in real scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CucRuotThua完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
今天做实验了吗完成签到 ,获得积分10
1秒前
zho应助小周采纳,获得10
1秒前
感冒了完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
加油加油发布了新的文献求助10
3秒前
ding应助典雅的俊驰采纳,获得10
4秒前
4秒前
4秒前
ximei发布了新的文献求助10
5秒前
丘比特应助猪猪hero采纳,获得10
5秒前
红叶发布了新的文献求助10
5秒前
土星人完成签到,获得积分20
5秒前
Pengzhuhuai完成签到,获得积分10
8秒前
老孙完成签到,获得积分10
8秒前
朱先生发布了新的文献求助10
8秒前
9秒前
Helical应助勤劳滑板采纳,获得10
10秒前
锖清发布了新的文献求助10
10秒前
田様应助反方向的钟采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
150350完成签到,获得积分10
12秒前
小峰峰完成签到,获得积分10
12秒前
sherrinford完成签到,获得积分10
14秒前
狸宝的小果子完成签到 ,获得积分10
14秒前
14秒前
Soulmate发布了新的文献求助10
15秒前
wen发布了新的文献求助10
15秒前
CipherSage应助锖清采纳,获得10
16秒前
222123发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881