表位
计算机科学
任务(项目管理)
T细胞受体
人工智能
计算生物学
T细胞
机器学习
生物
免疫学
抗原
免疫系统
管理
经济
作者
Ceder Dens,Kris Laukens,Wout Bittremieux,Pieter Meysman
标识
DOI:10.1101/2023.04.06.535863
摘要
Summary / Abstract Even high-performing machine learning models can have problems when deployed in a real-world setting if the data used to train and test the model contains biases. TCR–epitope binding prediction for novel epitopes is a very important but yet unsolved problem in immunology. In this article, we describe how the technique used to create negative data for the TCR–epitope interaction prediction task can lead to a strong bias and makes that the performance drops to random when tested in a more realistic scenario.
科研通智能强力驱动
Strongly Powered by AbleSci AI