Plasmonic silver nanoparticle-deposited n-Bi2S3/p-MnOS diode-type catalyst for enhanced photocatalytic nitrogen fixation: Introducing the defective p-MnOS

光催化 纳米颗粒 材料科学 纳米技术 辐照 化学工程 纳米棒 化学 催化作用 生物化学 工程类 物理 核物理学
作者
Merga Hailemariam Urgesa,Girma Sisay Wolde,Dong‐Hau Kuo
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:464: 142717-142717 被引量:12
标识
DOI:10.1016/j.cej.2023.142717
摘要

Photocatalytic nitrogen reduction reaction (PNRR) is clean and sustainable, considered an ideal synthesis technology for ammonia (NH3). In this study, we in situ developed the n-Bi2S3 nanorod/p-MnOS cubic composite catalyst for the first time using a one-step hydrothermal method, as MnOS, listed in the X-ray diffraction standard data file as an uncharacterized compound, has not been reported since 1965. Then, using a photodeposition technique, Ag nanoparticles (NPs) were added to the surface of the Bi2S3/MnOS to enhance PNRR via the surface plasmon resonance. After different characterization techniques for evaluation, Ag-Bi2S3/MnOS is found to be highly effective in the spatial separation of photogenerated electron-hole pairs due to the charge transfer at the composite interface. Photodeposited Ag is applied as an electron trapper to enhance the spatial separation of charge carriers. Based on their ability to reduce nitrogen under simulated solar light irradiation, the PNRR activities of Bi2S3, MnOS, Bi2S3/MnOS, and 0.5 to 2 % Ag-Bi2S3/MnOS were evaluated. After two hours, the PNRR activity of 1 % Ag-Bi2S3/MnOS produced ammonia 5.9 mmol/g, double the amount of Bi2S3/MnOS composite and approximately 5 times the amounts of Bi2S3 and MnOS materials. PNRR enhancement involves the internal static electron field created at the n-type Bi2S3/p-type MnOS interface and the improved electron conductivity with the photodeposition of Ag NPs, to speed up the reaction of reactive species. The importance of solid solution engineering in material design is demonstrated in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕃薯叶应助zlkzyy采纳,获得10
1秒前
1秒前
香蕉觅云应助护理小白采纳,获得10
2秒前
阿斯披粼完成签到,获得积分10
2秒前
热情铭完成签到 ,获得积分10
2秒前
wxy发布了新的文献求助10
2秒前
吓我一跳完成签到,获得积分10
2秒前
淡定归尘完成签到,获得积分0
2秒前
文献完成签到,获得积分20
3秒前
3秒前
3秒前
李爱国应助lzb采纳,获得10
3秒前
lz完成签到,获得积分10
3秒前
丘比特应助ariaooo采纳,获得10
3秒前
yiyizhou发布了新的文献求助10
3秒前
3秒前
4秒前
Avvei完成签到,获得积分10
5秒前
彭于晏应助淡淡碧玉采纳,获得10
5秒前
我是老大应助热心的诗蕊采纳,获得10
5秒前
熊饼干完成签到,获得积分20
6秒前
爱笑夜蕾发布了新的文献求助10
6秒前
CC应助SYY采纳,获得10
6秒前
hujin完成签到,获得积分10
6秒前
7秒前
EVE完成签到,获得积分10
7秒前
清秀书桃完成签到,获得积分10
7秒前
WDD完成签到,获得积分10
7秒前
8秒前
郭宇完成签到 ,获得积分10
9秒前
wanci应助KerwinLLL采纳,获得10
9秒前
Henry发布了新的文献求助10
9秒前
10秒前
共享精神应助活力的果汁采纳,获得10
10秒前
勤恳怡发布了新的文献求助20
11秒前
IMxYang应助回忆里的大西瓜采纳,获得20
11秒前
林钟望发布了新的文献求助10
11秒前
11秒前
爱笑夜蕾完成签到,获得积分10
11秒前
烟花应助Geralt64采纳,获得10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813238
求助须知:如何正确求助?哪些是违规求助? 3357708
关于积分的说明 10387917
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689065
邀请新用户注册赠送积分活动 812546
科研通“疑难数据库(出版商)”最低求助积分说明 767177