Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies

全球导航卫星系统应用 计算机科学 干扰(通信) 人工智能 机器学习 监督学习 全球定位系统 人工神经网络 电信 频道(广播)
作者
Lucas Heublein,Nisha Lakshmana Raichur,Tobias Feigl,Tobias Brieger,Fin Heuer,Lennart Asbach,Alexander Rügamer,Felix Ott
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 卷期号:: 1260-1293
标识
DOI:10.33012/2024.19887
摘要

The accuracy and reliability of vehicle localization on roads are crucial for applications such as self-driving cars, toll systems, and digital tachographs. To achieve accurate positioning, vehicles typically use global navigation satellite system (GNSS) receivers to validate their absolute positions. However, GNSS-based positioning can be compromised by interference signals, necessitating the identification, classification, determination of purpose, and localization of such interference to mitigate or eliminate it. Recent approaches based on machine learning (ML) have shown superior performance in monitoring interference. However, their feasibility in real-world applications and environments has yet to be assessed. Effective implementation of ML techniques requires training datasets that incorporate realistic interference signals, including real-world noise and potential multipath effects that may occur between transmitter, receiver, and satellite in the operational area. Additionally, these datasets require reference labels. Creating such datasets is often challenging due to legal restrictions, as causing interference to GNSS sources is strictly prohibited. Consequently, the performance of ML-based methods in practical applications remains unclear. To address this gap, we describe a series of large-scale measurement campaigns conducted in real-world settings at two highway locations in Germany and the Seetal Alps in Austria, and in large-scale controlled indoor environments. We evaluate the latest supervised ML-based methods to report on their performance in real-world settings and present the applicability of pseudo-labeling for unsupervised learning. We demonstrate the challenges of combining datasets due to data discrepancies and evaluate outlier detection, domain adaptation, and data augmentation techniques to present the models' capabilities to adapt to changes in the datasets. Datasets and source code: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黄小黄辉煌完成签到,获得积分10
刚刚
1秒前
科目三应助科研土狗采纳,获得10
1秒前
大模型应助沐沐采纳,获得10
2秒前
xiewuhua发布了新的文献求助10
2秒前
3秒前
5秒前
苹果寻菱应助嬉笑采纳,获得10
5秒前
hyx完成签到 ,获得积分10
5秒前
Elin完成签到,获得积分10
6秒前
7秒前
LYL发布了新的文献求助10
7秒前
8秒前
汤元关注了科研通微信公众号
8秒前
lxb发布了新的文献求助10
9秒前
卫念烟发布了新的文献求助60
9秒前
9秒前
科研通AI5应助糟糕的道罡采纳,获得10
9秒前
SciGPT应助Hiker采纳,获得10
10秒前
科研通AI5应助XiaoQi采纳,获得10
10秒前
李剑鸿发布了新的文献求助50
11秒前
伯赏元彤发布了新的文献求助10
12秒前
13秒前
mzhnx发布了新的文献求助30
13秒前
英俊的铭应助大胆初雪采纳,获得10
15秒前
Lucas应助uusmile采纳,获得10
15秒前
15秒前
18秒前
腼腆的康发布了新的文献求助10
18秒前
20秒前
CipherSage应助mzhnx采纳,获得10
20秒前
20秒前
21秒前
21秒前
pxy完成签到,获得积分10
21秒前
22秒前
害怕的不评完成签到,获得积分10
22秒前
XiaoQi发布了新的文献求助10
22秒前
22秒前
匹诺曹完成签到 ,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797685
求助须知:如何正确求助?哪些是违规求助? 3343169
关于积分的说明 10314824
捐赠科研通 3059896
什么是DOI,文献DOI怎么找? 1679129
邀请新用户注册赠送积分活动 806367
科研通“疑难数据库(出版商)”最低求助积分说明 763144