Study on Audit Risk Model Based on Data Mining Algorithm

审计 数据挖掘 算法 计算机科学 业务 会计
作者
Fu Meng
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425400142
摘要

With the widespread application of modern information technologies such as big data, enterprises have generated a large amount of data in their daily operations. The traditional audit methods have drawbacks such as high cost and high consumption, and can no longer meet the needs of audit work in the digital era. Therefore, it is urgent to adopt audit methods suitable for the digital era to improve audit quality and reduce enterprise Audit risk. For professional auditors in enterprises, it is very important to utilize emerging technologies such as data mining algorithms. The audited enterprise may tamper with its financial statements, and identifying high-quality audit data from massive amounts of data is a huge challenge. Compared to traditional audit methods, data mining algorithms can significantly improve the efficiency and accuracy of audit work. For example, the BP neural network, with its powerful nonlinear mapping ability, can capture complex relationships in data; Support vector machines classify data by finding the optimal hyperplane in high-dimensional space and have good generalization ability; random forest reduces overfitting and improves prediction accuracy by integrating multiple decision trees; Association rule algorithms can discover interesting relationships between data items, helping auditors identify potential fraudulent behavior or abnormal transactions. Therefore, the purpose of this study is to accurately evaluate and reduce the audit risk of enterprises, and to build an audit risk model using computer data mining algorithms. This provides necessary reference and guidance for auditors to conduct data analysis and mine valuable data during the audit process of enterprises, thereby improving audit efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
动听冰淇淋完成签到,获得积分10
1秒前
Akim应助爱学习的慧慧子采纳,获得10
1秒前
板板发布了新的文献求助30
2秒前
2秒前
开心发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
快乐小狗发布了新的文献求助10
4秒前
上官若男应助醉熏的井采纳,获得10
4秒前
健壮雪糕发布了新的文献求助10
4秒前
4秒前
4秒前
八方面完成签到 ,获得积分10
5秒前
6秒前
晚风发布了新的文献求助10
6秒前
bkagyin应助Captain采纳,获得10
6秒前
6秒前
bynowcc完成签到,获得积分10
6秒前
7秒前
1234发布了新的文献求助10
7秒前
六六发布了新的文献求助10
8秒前
8秒前
静香同学发布了新的文献求助10
8秒前
8秒前
Young_Lee完成签到,获得积分10
8秒前
深情安青应助xiaoguoxiaoguo采纳,获得10
10秒前
QQ发布了新的文献求助10
10秒前
Li发布了新的文献求助10
11秒前
12秒前
kery发布了新的文献求助10
12秒前
爱学习的小木应助好运来采纳,获得10
12秒前
13秒前
caomao发布了新的文献求助10
13秒前
勤恳的越泽完成签到,获得积分20
13秒前
14秒前
YCW发布了新的文献求助10
14秒前
顾矜应助晚风采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790371
求助须知:如何正确求助?哪些是违规求助? 3335077
关于积分的说明 10273337
捐赠科研通 3051539
什么是DOI,文献DOI怎么找? 1674723
邀请新用户注册赠送积分活动 802757
科研通“疑难数据库(出版商)”最低求助积分说明 760853