Pre-training with Fractional Denoising to Enhance Molecular Property Prediction

财产(哲学) 培训(气象学) 降噪 计算机科学 人工智能 数学 应用数学 物理 哲学 认识论 气象学
作者
Yuyan Ni,Shikun Feng,Xin Hong,Yuancheng Sun,Wei‐Ying Ma,Zhi-Ming Ma,Qiwei Ye,Yanyan Lan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.11086
摘要

Deep learning methods have been considered promising for accelerating molecular screening in drug discovery and material design. Due to the limited availability of labelled data, various self-supervised molecular pre-training methods have been presented. While many existing methods utilize common pre-training tasks in computer vision (CV) and natural language processing (NLP), they often overlook the fundamental physical principles governing molecules. In contrast, applying denoising in pre-training can be interpreted as an equivalent force learning, but the limited noise distribution introduces bias into the molecular distribution. To address this issue, we introduce a molecular pre-training framework called fractional denoising (Frad), which decouples noise design from the constraints imposed by force learning equivalence. In this way, the noise becomes customizable, allowing for incorporating chemical priors to significantly improve molecular distribution modeling. Experiments demonstrate that our framework consistently outperforms existing methods, establishing state-of-the-art results across force prediction, quantum chemical properties, and binding affinity tasks. The refined noise design enhances force accuracy and sampling coverage, which contribute to the creation of physically consistent molecular representations, ultimately leading to superior predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助耍酷的世平采纳,获得10
1秒前
科研通AI5应助hellobaboon采纳,获得10
3秒前
3秒前
4秒前
超级的千青完成签到 ,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得50
8秒前
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
小刘一定能读C9博完成签到 ,获得积分10
8秒前
9秒前
桐桐应助冷静的奇迹采纳,获得10
10秒前
wzz完成签到,获得积分10
11秒前
秃头披风侠完成签到,获得积分10
11秒前
飘逸初蓝完成签到,获得积分10
11秒前
NexusExplorer应助小蚊子采纳,获得10
12秒前
暗月皇发布了新的文献求助10
14秒前
15秒前
15秒前
biang完成签到,获得积分10
18秒前
18秒前
零碎的岛屿应助冷傲迎梦采纳,获得10
19秒前
20秒前
善学以致用应助飘逸初蓝采纳,获得10
20秒前
善良的剑通应助君齐采纳,获得10
21秒前
hellobaboon发布了新的文献求助10
22秒前
小蚊子发布了新的文献求助10
23秒前
jasmine完成签到,获得积分10
24秒前
24秒前
科研通AI5应助馒头采纳,获得30
27秒前
明理的踏歌完成签到,获得积分10
28秒前
研友_Z30GJ8完成签到,获得积分0
29秒前
30秒前
xianyaoz完成签到 ,获得积分0
31秒前
李健的小迷弟应助momo采纳,获得10
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745