Predicting Acute Exacerbation Phenotype in Chronic Obstructive Pulmonary Disease Patients using VGG-16 Deep Learning

医学 恶化 肺病 表型 内科学 慢性阻塞性肺病 重症监护医学 基因 生物化学 化学
作者
Shengchuan Feng,Ran Zhang,Wenxiu Zhang,Yuqiong Yang,Aiqi Song,Jiawei Chen,Fengyan Wang,Jiaxuan Xu,Cuixia Liang,Xiaoyun Liang,Rongchang Chen,Zhenyu Liang
出处
期刊:Respiration [Karger Publishers]
卷期号:: 1-14
标识
DOI:10.1159/000540383
摘要

Introduction: Exacerbations of chronic obstructive pulmonary disease (COPD) have a significant impact on hospitalizations, morbidity, and mortality of patients. This study aimed to develop a model for predicting acute exacerbation in COPD patients (AECOPD) based on deep-learning (DL) features. Methods: We performed a retrospective study on 219 patients with COPD who underwent inspiratory and expiratory HRCT scans. By recording the acute respiratory events of the previous year, these patients were further divided into non-AECOPD group and AECOPD group according to the presence of acute exacerbation events. Sixty-nine quantitative CT (QCT) parameters of emphysema and airway were calculated by NeuLungCARE software, and 2,000 DL features were extracted by VGG-16 method. The logistic regression method was employed to identify AECOPD patients, and 29 patients of external validation cohort were used to access the robustness of the results. Results: The model 3-B achieved an area under the receiver operating characteristic curve (AUC) of 0.933 and 0.865 in the testing cohort and external validation cohort, respectively. Model 3-I obtained AUC of 0.895 in the testing cohort and AUC of 0.774 in the external validation cohort. Model 7-B combined clinical characteristics, QCT parameters, and DL features achieved the best performance with an AUC of 0.979 in the testing cohort and demonstrating robust predictability with an AUC of 0.932 in the external validation cohort. Likewise, model 7-I achieved an AUC of 0.938 and 0.872 in the testing cohort and external validation cohort, respectively. Conclusions: DL features extracted from HRCT scans can effectively predict acute exacerbation phenotype in COPD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
精致的灰发布了新的文献求助10
1秒前
自信曼柔发布了新的文献求助10
1秒前
华仔应助Shirley Lv采纳,获得10
3秒前
3秒前
foreknowledge完成签到,获得积分10
4秒前
李李李发布了新的文献求助10
4秒前
大成子发布了新的文献求助10
5秒前
ZhouYW应助XX采纳,获得10
5秒前
秀丽千山完成签到,获得积分20
5秒前
zhouxu发布了新的文献求助10
7秒前
现代书雪发布了新的文献求助10
7秒前
7秒前
大模型应助朱zz采纳,获得10
7秒前
汉堡包应助liangliang采纳,获得10
8秒前
Zekun完成签到,获得积分10
8秒前
8秒前
易楠发布了新的文献求助10
8秒前
踏实的白羊完成签到,获得积分10
9秒前
11秒前
Ava应助blueming采纳,获得10
12秒前
酷波er应助4归0采纳,获得10
12秒前
nature发布了新的文献求助10
13秒前
科研通AI5应助跳跃的烨华采纳,获得10
13秒前
鲸鱼发布了新的文献求助10
13秒前
精致的灰完成签到,获得积分10
14秒前
李健应助zoe采纳,获得20
14秒前
思源应助922采纳,获得10
14秒前
三物完成签到 ,获得积分10
15秒前
15秒前
sivan完成签到,获得积分10
16秒前
小富发布了新的文献求助10
16秒前
illusion2019应助科研通管家采纳,获得10
17秒前
竹筏过海应助科研通管家采纳,获得30
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
竹筏过海应助科研通管家采纳,获得30
17秒前
illusion2019应助科研通管家采纳,获得10
17秒前
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409