Data-Driven Optimised XGBoost for Predicting the Performance of Axial Load Bearing Capacity of Fully Cementitious Grouted Rock Bolting Systems

螺栓连接 岩土工程 胶凝的 承载力 地质学 环境科学 结构工程 材料科学 工程类 复合材料 水泥
作者
Behshad Jodeiri Shokri,Ali Mirzaghorbanali,Kevin McDougall,Warna Karunasena,Hadi Nourizadeh,Shima Entezam,Shahab Hosseini,Naj Aziz
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (21): 9925-9925 被引量:10
标识
DOI:10.3390/app14219925
摘要

This article investigates the application of eXtreme gradient boosting (XGBoost) and hybrid metaheuristics optimisation techniques to predict the axial load bearing capacity of fully grouted rock bolting systems. For this purpose, a comprehensive dataset of 72 pull-out tests was built, considering various influential parameters such as three water-to-grout (W/G) ratios, five ranges of curing time (CT), three different grout admixtures with two different fly ash (FA) contents, and two different diameter confinements (DCs). Additionally, to find out the effect of the mechanical behaviour of grouts on the performance of fully grouted rock bolting systems, seventy-two uniaxial compression strength (UCS) samples were cast and tested simultaneously with pull-out samples. The UCS samples were prepared with the same details as the pull-out samples to avoid any inconsistency. The results highlight that peak load values generally increase with longer curing times, lower W/G, and higher UCS and DC values. The main novelty of this paper lies in its data-driven approach, using various XGBoost models. This method offers a time-, cost-, and labour-efficient alternative to traditional experimental methods for predicting rock bolt performance. For this purpose, after building the dataset and dividing it randomly into two training and testing datasets, five different XGBoost models were developed: a standalone XGBoost model and four hybrid models incorporating Harris hawk optimisation (HHO), the jellyfish search optimiser (JSO), the dragonfly algorithm (DA), and the firefly algorithm (FA). These models were subsequently evaluated for their ability to predict peak load values. The results demonstrate that all models effectively predicted peak load values, but the XGBoost-JSO hybrid model demonstrated superior performance, achieving the highest R-squared coefficients of 0.987 and 0.988 for the training and testing datasets, respectively. Sensitivity analysis revealed that UCS values were the most influential parameter, while FA content had the least impact on the maximum peak load values of fully cementitious grouted rock bolts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Luna666完成签到,获得积分10
刚刚
Unique完成签到,获得积分20
刚刚
羡羡发布了新的文献求助10
1秒前
Jolin完成签到,获得积分10
2秒前
2秒前
难过的妙晴完成签到 ,获得积分10
2秒前
科研型高松灯完成签到 ,获得积分10
3秒前
3秒前
受伤路灯发布了新的文献求助10
3秒前
LC发布了新的文献求助10
4秒前
阳光曼冬完成签到,获得积分20
4秒前
现实芒果完成签到,获得积分10
4秒前
天天快乐应助海晨采纳,获得10
5秒前
6秒前
科研通AI2S应助初晴采纳,获得10
6秒前
栖风南亭发布了新的文献求助10
7秒前
科研通AI6应助huanir99采纳,获得10
7秒前
7秒前
科研通AI6应助李佳采纳,获得10
8秒前
哇wwwww发布了新的文献求助10
8秒前
竹前家庆发布了新的文献求助30
8秒前
9秒前
无花果应助Lizhe采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
10秒前
wxyshare应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
研友_nvGy2Z发布了新的文献求助10
10秒前
田様应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得30
10秒前
英姑应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546807
求助须知:如何正确求助?哪些是违规求助? 4632666
关于积分的说明 14627670
捐赠科研通 4574151
什么是DOI,文献DOI怎么找? 2508170
邀请新用户注册赠送积分活动 1484741
关于科研通互助平台的介绍 1455845