Ad generation modalities and response to in-app advertising – an experimental study

模式 广告 合理行为理论 模态(人机交互) 价值(数学) 独创性 心理学 产品(数学) 动作(物理) 计算机科学 社会心理学 业务 社会学 人工智能 创造力 数学 物理 机器学习 量子力学 社会科学 几何学
作者
Charunayan Kamath,Sivakumar Alur
出处
期刊:Global knowledge, memory and communication [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/gkmc-04-2024-0245
摘要

Purpose The widespread use of mobile apps in marketing has resulted in in-app advertising to promote products and services. Research on in-app advertising has focused on several dimensions but not on the modality of ad generation. The use of artificial intelligence (AI) and memes as advertisements has paved the way for multiple ways to create them. This study aims to understand the effect of various advertisement generation modalities on an individual’s trust, attitude toward the advertisement, subjective norms, intentions and use of a particular product. Design/methodology/approach Using the theoretical lens of reasoned action and trust, the authors explored through an experimental study (five treatments-AI-generated ad and meme, human-created ad and meme and user-generated meme, and ( n = 300) the consumer’s intention to purchase a fictitious shampoo brand based on in-app advertising. The respondents were exposed to one of the treatments without knowledge of the ad generation modality. Findings Trust differed significantly across all the experimental conditions. Furthermore, the authors observe that the theory of reasoned action holds for all advertising generation modalities. Originality/value The use of AI in advertising is increasing exponentially, and brands are using AI-generated content to engage with their audiences on various platforms. To the best of the authors’ knowledge, this is one of the first studies to attempt to understand the effects of various ad generation modalities on the trust, attitude and behavior of individuals. Furthermore, this study examines both AI and human-created memes and their effects. The authors suggest optimizing the prompt engineering to develop AI-generated images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疏影完成签到,获得积分10
刚刚
1秒前
曾高高完成签到,获得积分10
1秒前
光之剑完成签到,获得积分10
2秒前
2秒前
2秒前
zhoudada发布了新的文献求助10
2秒前
mm发布了新的文献求助10
3秒前
小二郎应助shinn采纳,获得10
3秒前
3秒前
Criminology34应助lll采纳,获得10
4秒前
lulyt发布了新的文献求助10
4秒前
TvT发布了新的文献求助20
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Kaaaly发布了新的文献求助30
5秒前
Xieyusen发布了新的文献求助10
5秒前
5秒前
lllll发布了新的文献求助10
5秒前
hongping发布了新的文献求助10
6秒前
梦游发布了新的文献求助10
6秒前
wanci应助fine采纳,获得10
8秒前
jcx发布了新的文献求助10
8秒前
嗯嗯发布了新的文献求助10
8秒前
洛丶发布了新的文献求助10
9秒前
9秒前
淡淡之玉完成签到,获得积分20
9秒前
11秒前
山茶完成签到 ,获得积分20
11秒前
12秒前
乐乐应助刘碰蛋采纳,获得10
12秒前
科研通AI2S应助Unstoppable采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
Una发布了新的文献求助10
14秒前
bkagyin应助lalalalala采纳,获得10
15秒前
所所应助洛丶采纳,获得10
15秒前
15秒前
HH发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741