已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-contrast image super-resolution with deformable attention and neighborhood-based feature aggregation (DANCE): Applications in anatomic and metabolic MRI

人工智能 对比度(视觉) 计算机视觉 特征(语言学) 舞蹈 计算机科学 超分辨率 图像(数学) 模式识别(心理学) 艺术 哲学 语言学 文学类
作者
Wenxuan Chen,Sirui Wu,Shuai Wang,Zhongsen Li,Yang Jia,Huifeng Yao,Qiyuan Tian,Xiaolei Song
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103359-103359 被引量:12
标识
DOI:10.1016/j.media.2024.103359
摘要

Multi-contrast magnetic resonance imaging (MRI) reflects information about human tissues from different perspectives and has wide clinical applications. By utilizing the auxiliary information from reference images (Refs) in the easy-to-obtain modality, multi-contrast MRI super-resolution (SR) methods can synthesize high-resolution (HR) images from their low-resolution (LR) counterparts in the hard-to-obtain modality. In this study, we systematically discussed the potential impacts caused by cross-modal misalignments between LRs and Refs and, based on this discussion, proposed a novel deep-learning-based method with Deformable Attention and Neighborhood-based feature aggregation to be Computationally Efficient (DANCE) and insensitive to misalignments. Our method has been evaluated in two public MRI datasets, i.e., IXI and FastMRI, and an in-house MR metabolic imaging dataset with amide proton transfer weighted (APTW) images. Experimental results reveal that our method consistently outperforms baselines in various scenarios, with significant superiority observed in the misaligned group of IXI dataset and the prospective study of the clinical dataset. The robustness study proves that our method is insensitive to misalignments, maintaining an average PSNR of 30.67 dB when faced with a maximum range of ±9°and ±9 pixels of rotation and translation on Refs. Given our method's desirable comprehensive performance, good robustness, and moderate computational complexity, it possesses substantial potential for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水下月完成签到 ,获得积分10
1秒前
衣裳薄完成签到,获得积分10
1秒前
彬彬完成签到 ,获得积分10
2秒前
2秒前
千辞完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
Much完成签到 ,获得积分10
6秒前
Hou发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
渐变映射完成签到 ,获得积分10
8秒前
9秒前
哈哈哈完成签到,获得积分10
9秒前
Ak完成签到,获得积分0
10秒前
xiaomage发布了新的文献求助10
10秒前
wanci应助科研通管家采纳,获得10
11秒前
yaoyao6688发布了新的文献求助30
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
ppg123发布了新的文献求助10
11秒前
汉堡包应助Nolan采纳,获得10
12秒前
13秒前
找不到气得跳脚完成签到,获得积分10
13秒前
今后应助Lsmile采纳,获得10
13秒前
小湛湛完成签到 ,获得积分10
13秒前
安详凡完成签到 ,获得积分10
13秒前
喬老師完成签到,获得积分10
14秒前
斑鸠津发布了新的文献求助10
14秒前
淡定山柏发布了新的文献求助10
15秒前
浆糊朋友发布了新的文献求助10
18秒前
丰富的靖柔完成签到 ,获得积分10
18秒前
ding应助ppg123采纳,获得10
18秒前
几携完成签到 ,获得积分10
19秒前
斑鸠津完成签到,获得积分10
19秒前
赘婿应助GGGrigor采纳,获得30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713925
求助须知:如何正确求助?哪些是违规求助? 5218976
关于积分的说明 15272242
捐赠科研通 4865587
什么是DOI,文献DOI怎么找? 2612198
邀请新用户注册赠送积分活动 1562376
关于科研通互助平台的介绍 1519534