Aberrant dynamic functional and effective connectivity changes of the primary visual cortex in patients with retinal detachment via machine learning

视皮层 神经科学 视网膜 心理学 功能连接 皮质(解剖学) 医学 眼科
作者
Yu Ji,Yuan‐Yuan Wang,Qi Cheng,Wen-wen Fu,Ben-Liang Shu,Bin Wei,Qin-Yi Huang,Xiaorong Wu
出处
期刊:Neuroreport [Ovid Technologies (Wolters Kluwer)]
卷期号:35 (17): 1071-1081 被引量:2
标识
DOI:10.1097/wnr.0000000000002100
摘要

Objective Previous neuroimaging studies have identified significant alterations in brain functional activity in retinal detachment (RD) patients, these investigations predominantly concentrated on local functional activity changes. The potential directional alterations in functional connectivity within the primary visual cortex (V1) in RD patients remain to be elucidated. Methods In this study, we employed seed-based functional connectivity analysis along with Granger causality analysis to examine the directional alterations in dynamic functional connectivity (dFC) within the V1 region of patients diagnosed with RD. Finally, a support vector machine algorithm was utilized to classify patients with RD and healthy controls (HCs). Results RD patients exhibited heightened dynamic functional connectivity (dFC) and dynamic effective connectivity (dEC) between the Visual Network (VN) and default mode network (DMN), as well as within the VN, compared to HCs. Conversely, dFC between VN and auditory network (AN) decreased, and dEC between VN and sensorimotor network (SMN) significantly reduced. In state 4, RD patients had higher frequency. Notably, variations in dFC originating from the left V1 region proved diagnostically effective, achieving an AUC of 0.786. Conclusion This study reveals significant alterations in the connectivity between the VN and the default mode network in patients with RD. These changes may disrupt visual information processing and higher cognitive integration in RD patients. Additionally, alterations in the left V1 region and whole-brain dFC show promising potential in aiding the diagnosis of RD. These findings offer valuable insights into the neural mechanisms underlying visual and cognitive impairments associated with RD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Michael完成签到 ,获得积分10
1秒前
liusui完成签到 ,获得积分10
12秒前
水晶李完成签到 ,获得积分10
14秒前
wlscj应助科研通管家采纳,获得20
25秒前
wlscj应助科研通管家采纳,获得20
25秒前
serendipity完成签到 ,获得积分10
27秒前
林夕完成签到 ,获得积分10
39秒前
George完成签到,获得积分10
40秒前
Crazybow5完成签到,获得积分10
55秒前
1分钟前
李lll发布了新的文献求助10
1分钟前
草木发布了新的文献求助10
1分钟前
Veronica Mew完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助草木采纳,获得10
1分钟前
rayc应助Mira采纳,获得10
1分钟前
共享精神应助李lll采纳,获得10
1分钟前
英姑应助中华男子汉采纳,获得10
1分钟前
雪儿完成签到 ,获得积分10
1分钟前
合适的自行车完成签到 ,获得积分10
1分钟前
song完成签到 ,获得积分10
1分钟前
zhangguo完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
shacodow完成签到,获得积分10
1分钟前
1分钟前
妇产科医生完成签到 ,获得积分10
1分钟前
甘sir完成签到 ,获得积分10
1分钟前
Mason完成签到 ,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
2分钟前
Luna爱科研完成签到 ,获得积分10
2分钟前
吃瓜米吃瓜米完成签到 ,获得积分10
2分钟前
小山己几完成签到,获得积分10
2分钟前
LELE完成签到 ,获得积分10
2分钟前
2分钟前
草木发布了新的文献求助10
2分钟前
ll完成签到,获得积分10
2分钟前
蚂蚁飞飞完成签到,获得积分10
2分钟前
瞿人雄完成签到,获得积分10
2分钟前
没心没肺完成签到,获得积分10
2分钟前
青檬完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5408201
求助须知:如何正确求助?哪些是违规求助? 4525543
关于积分的说明 14101887
捐赠科研通 4439567
什么是DOI,文献DOI怎么找? 2436793
邀请新用户注册赠送积分活动 1428744
关于科研通互助平台的介绍 1406999