Modelling Soil δ13C across the Tibetan Plateau Using Deep-Learning

高原(数学) 地质学 土壤科学 数学 数学分析
作者
TERESA ZHOU,Yue Lai,Z. H. Yang,Yun Shi,Xinrui Luo,Liu Li,Peixin Yu,Guowei Chen,Le Cao,Shijie Fan,Chao Cai,Jianxin Sun,Shu‐Hua Chen,Houyuan Lü,X. L.,Shun-qiang LI,Xiaolu Tang
出处
期刊:Journal of Environmental Informatics [International Society for Environmental Information Sciences]
标识
DOI:10.3808/jei.202400519
摘要

Soil carbon isotopes (δ13C) provide reliable insights for studying soil carbon turnover at a long-term scale. The Tibetan Plateau (TP), often referred as “the third pole of the earth”, is highly sensitive to global climate change, and exhibits an early warning signal of global warming. Although many studies detected soil δ13C variability at site scales, there is still a knowledge gap existing in the spatial pattern of soil δ13C across the TP. In this study, we compiled a database of 198 topsoil δ13C observations from published literatures and used a modified multi-layer perceptron (MLP) neural network algorithm to predict the spatial pattern of topsoil δ13C and β (indicating the decomposition rate of soil organic carbon (SOC), calculated as δ13C divided by logarithmically converted SOC) at 500m resolution. Results showed that MLP model effectively predicted topsoil δ13C with a model efficiency of 0.72 and a root mean square error of 1.16‰. Topsoil δ13C varied significantly across different ecosystem types (p < 0.001) with a mean δ13C of –25.89 ± 1.15‰ (mean ± standard deviation) for forests, –24.91 ± 1.03‰ for shrublands, –22.95 ± 1.44‰ for grasslands, and –18.88 ± 2.37‰ for deserts. Furthermore, there was an increasing trend of predicted δ13C from the southeastern to the northwestern TP, likely linked to vegetation type and climatic conditions. β values were low in the eastern TP and higher in the northern and northwestern TP, indicating faster SOC turnover rate in the east TP compared to the north and northwest. This study represents the first effort to develop a fine resolution product of topsoil δ13C and β across the TP, which could provide an independent, data-driven benchmark for biogeochemical cycling models to study SOC turnover and terrestrial carbon-climate feedback over the TP under climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘世伟发布了新的文献求助50
1秒前
lala发布了新的文献求助10
1秒前
zhonghebi发布了新的文献求助10
2秒前
科研通AI5应助Zivyy采纳,获得10
2秒前
科研通AI2S应助黎黎黎大虎采纳,获得10
3秒前
3秒前
5秒前
5秒前
6秒前
豆豆发布了新的文献求助10
8秒前
仙笛童神发布了新的文献求助10
8秒前
laiwei完成签到,获得积分10
9秒前
xu完成签到,获得积分10
9秒前
余悲也白发布了新的文献求助10
9秒前
好卉发布了新的文献求助10
9秒前
10秒前
黄辉冯发布了新的文献求助10
12秒前
13秒前
相识发布了新的文献求助10
15秒前
彭于晏应助仙笛童神采纳,获得10
16秒前
科研通AI5应助凛冬采纳,获得10
17秒前
小羊佳佳发布了新的文献求助10
17秒前
好卉完成签到,获得积分10
18秒前
科研通AI2S应助豆豆采纳,获得10
18秒前
团结友爱完成签到,获得积分10
20秒前
秀丽的曼雁完成签到,获得积分10
20秒前
英姑应助漂亮翅膀采纳,获得10
22秒前
22秒前
相识完成签到,获得积分10
23秒前
25秒前
ZJING9完成签到,获得积分10
28秒前
you秀的哈密瓜完成签到 ,获得积分10
28秒前
28秒前
xuan发布了新的文献求助10
28秒前
Se1fer完成签到,获得积分10
29秒前
29秒前
32秒前
tttt完成签到 ,获得积分10
33秒前
文静的摩托完成签到,获得积分10
33秒前
默客发布了新的文献求助10
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176584
求助须知:如何正确求助?哪些是违规求助? 3711870
关于积分的说明 11705579
捐赠科研通 3394740
什么是DOI,文献DOI怎么找? 1862417
邀请新用户注册赠送积分活动 921195
科研通“疑难数据库(出版商)”最低求助积分说明 833056