亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Video Fire Recognition Using Zero-shot Vision-language Models Guided by a Task-aware Object Detector

计算机科学 弹丸 任务(项目管理) 探测器 计算机视觉 对象(语法) 人工智能 零(语言学) 人机交互 语言学 电信 哲学 经济 有机化学 化学 管理
作者
Diego Gragnaniello,Antonio Greco,Carlo Sansone,Bruno Vento
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:2
标识
DOI:10.1145/3721291
摘要

Fire detection from images or videos has gained a growing interest in recent years due to the criticality of the application. Both reliable real-time detectors and efficient retrieval techniques, able to process large databases acquired by sensor networks, are needed. Even if the reliability of artificial vision methods improved in the last years, some issues are still open problems. In particular, literature methods often reveal a low generalization capability when employed in scenarios different from the training ones in terms of framing distance, surrounding environment, or weather conditions. This can be addressed by considering contextual information and, more specifically, using vision-language models capable of interpreting and describing the framed scene. In this work, we propose FIRE-TASTIC: FIre REcognition with Task-Aware Spatio-Temporal Image Captioning, a novel framework to use object detectors in conjunction with vision-language models for fire detection and information retrieval. The localization capability of the former makes it able to detect even tiny fire traces but expose the system to false alarms. These are strongly reduced by the impressive zero-shot generalization capability of the latter, which can recognize and describe fire-like objects without prior fine-tuning. We also present a variant of the FIRE-TASTIC framework based on Visual Question Answering instead of Image Captioning, which allows one to customize the retrieved information with personalized questions. To integrate the high-level information provided by both neural networks, we propose a novel method to query the vision-language models using the temporal and spatial localization information provided by the object detector. The proposal can improve the retrieval performance, as evidenced by the experiments conducted on two recent fire detection datasets, showing the effectiveness and the generalization capabilities of FIRE-TASTIC, which surpasses the state of the art. Moreover, the vision-language model, which is unsuitable for video processing due to its high computational load, is executed only on suspicious frames, allowing for real-time processing. This makes FIRE-TASTIC suitable for both real-time processing and information retrieval on large datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豌豆完成签到 ,获得积分10
4秒前
等意送汝完成签到 ,获得积分10
4秒前
英姑应助linshaoyu采纳,获得10
7秒前
李健的小迷弟应助Jemry采纳,获得10
9秒前
11秒前
Leyii发布了新的文献求助10
22秒前
24秒前
eyent燕子发布了新的文献求助10
29秒前
科研通AI2S应助尼仲星采纳,获得10
29秒前
30秒前
巴巴bow完成签到 ,获得积分10
33秒前
迷你的靖雁完成签到,获得积分10
34秒前
希望天下0贩的0应助sun采纳,获得10
36秒前
leemiii完成签到 ,获得积分10
36秒前
55秒前
58秒前
叶十七完成签到,获得积分10
1分钟前
sun发布了新的文献求助10
1分钟前
也是难得取个名完成签到 ,获得积分10
1分钟前
小蘑菇应助qinzhu采纳,获得10
1分钟前
1分钟前
1分钟前
尼仲星发布了新的文献求助10
1分钟前
加缪应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
qinzhu发布了新的文献求助10
1分钟前
Leyii发布了新的文献求助10
1分钟前
rengar完成签到,获得积分10
1分钟前
1分钟前
热水养花完成签到 ,获得积分10
1分钟前
梁曦发布了新的文献求助10
1分钟前
nfei发布了新的文献求助10
1分钟前
1分钟前
1分钟前
baba小天后发布了新的文献求助10
2分钟前
犹豫疾完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952250
求助须知:如何正确求助?哪些是违规求助? 4215044
关于积分的说明 13110793
捐赠科研通 3996875
什么是DOI,文献DOI怎么找? 2187683
邀请新用户注册赠送积分活动 1202932
关于科研通互助平台的介绍 1115710