已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NP-TCMtarget: a network pharmacology platform for exploring mechanisms of action of traditional Chinese medicine

动作(物理) 中医药 药理学 传统医学 计算机科学 计算生物学 医学 生物 替代医学 量子力学 物理 病理
作者
Aoyi Wang,Haoyang Peng,Yingdong Wang,Haoran Zhang,Caiping Cheng,Jinzhong Zhao,Wuxia Zhang,Mantang Chen,Peng Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (1) 被引量:3
标识
DOI:10.1093/bib/bbaf078
摘要

The biological targets of traditional Chinese medicine (TCM) are the core effectors mediating the interaction between TCM and the human body. Identification of TCM targets is essential to elucidate the chemical basis and mechanisms of TCM for treating diseases. Given the chemical complexity of TCM, both in silico high-throughput compound-target interaction predicting models and biological profile-based methods have been commonly applied for identifying TCM targets based on the structural information of TCM chemical components and biological information, respectively. However, the existing methods lack the integration of TCM chemical and biological information, resulting in difficulty in the systematic discovery of TCM action pathways. To solve this problem, we propose a novel target identification model NP-TCMtarget to explore the TCM target path by combining the overall chemical and biological profiles. First, NP-TCMtarget infers TCM effect targets by calculating associations between herb/disease inducible gene expression profiles and specific gene signatures for 8233 targets. Then, NP-TCMtarget utilizes a constructed binary classification model to predict binding targets of herbal ingredients. Finally, we can distinguish TCM direct and indirect targets by comparing the effect targets and binding targets to establish the action pathways of herbal component-direct target-indirect target by mapping TCM targets in the biological molecular network. We apply NP-TCMtarget to the formula XiaoKeAn to demonstrate the power of revealing the action pathways of herbal formula. We expect that this novel model could provide a systematic framework for exploring the molecular mechanisms of TCM at the target level. NP-TCMtarget is available at http://www.bcxnfz.top/NP-TCMtarget.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天下雨发布了新的文献求助10
2秒前
3秒前
充电宝应助可耐的毛衣采纳,获得10
3秒前
5秒前
yy完成签到,获得积分10
5秒前
nm发布了新的文献求助10
8秒前
11秒前
大个应助Nove采纳,获得30
13秒前
传奇3应助卡蒂狗采纳,获得10
13秒前
14秒前
17秒前
jinyue发布了新的文献求助10
17秒前
nm完成签到,获得积分10
18秒前
shetianlang完成签到 ,获得积分10
18秒前
19秒前
文迪发布了新的文献求助10
20秒前
caibaozi发布了新的文献求助30
23秒前
26秒前
伶俐的无颜完成签到 ,获得积分10
27秒前
组难装发布了新的文献求助40
28秒前
TRY发布了新的文献求助10
30秒前
美满的可冥完成签到,获得积分20
31秒前
魔幻的雁完成签到 ,获得积分10
35秒前
jinyue完成签到,获得积分10
40秒前
40秒前
Xiao10105830完成签到,获得积分10
42秒前
character577完成签到,获得积分10
43秒前
43秒前
Faine完成签到 ,获得积分10
45秒前
hmhu发布了新的文献求助10
46秒前
47秒前
47秒前
48秒前
LONGQIX完成签到,获得积分20
49秒前
缥缈纲发布了新的文献求助10
49秒前
笨笨猪发布了新的文献求助10
51秒前
caibaozi完成签到,获得积分10
51秒前
52秒前
科研通AI5应助文迪采纳,获得10
53秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324660
关于积分的说明 10219108
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467