The machine learning prediction model of non-alcoholic fatty liver; the role of hydrogen and methane breath tests

脂肪肝 酒精性肝病 化学 甲烷 气体分析呼吸 内科学 医学 胃肠病学 色谱法 有机化学 肝硬化 疾病
作者
Sanggwon An,E.Y. Cho,Junho Hwang,Hyunseong Yang,Jungho Hwang,Kyu-Sik Shin,Kyu-Nam Kim,Wooyoung Lee
出处
期刊:Journal of Breath Research [IOP Publishing]
标识
DOI:10.1088/1752-7163/addff9
摘要

Nonalcoholic fatty liver disease (NAFLD) is now the leading cause of global chronic liver disease, affecting approximately 32.4% of the population in various regions and imposing healthcare and economic burdens. The gold standard for the diagnosis of NAFLD, such as liver biopsy, has numerous limitations in large-scale screening. Recent studies have explored the use of machine learning to diagnose NAFLD. In this study, we investigated the effect of the Lactulose Breath Test (LBT) on a machine-learning model for predicting NAFLD. Methods: The input variables for machine learning included three combination sets to assess the effect of the LBT results: anthropometric characteristics and blood test results; anthropometric characteristics and LBT results; and anthropometric characteristics, blood test results, and LBT results. The machine learning models developed in this study included Linear Regression, Support Vector Machine, K-Nearest Neighbor, Random Forest, and Extreme Gradient Boosting (XGBoost) with 536 participants. The model performance was evaluated using six metrics: Accuracy, Area Under the Receiver Operating Characteristic curve (AUROC), Specificity, Sensitivity, Precision, and F1 score. Results: Among the five models, XGBoost had the highest AUROC at 0.88. The AUROC results from the three combination variable sets indicate that the LBT results significantly improve the model performance. Conclusion: LBT results improve the NAFLD prediction model and provide an opportunity for additional NAFLD screening in patients receiving LBT. .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Chensir采纳,获得10
刚刚
风清扬应助靓丽藏花采纳,获得10
1秒前
Cc发布了新的文献求助10
1秒前
4秒前
nn完成签到,获得积分20
4秒前
6秒前
我是老大应助dian采纳,获得10
6秒前
Q9关注了科研通微信公众号
6秒前
东风完成签到,获得积分10
8秒前
9秒前
过儿完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI5应助nn采纳,获得10
11秒前
Mengfanrong发布了新的文献求助10
11秒前
11秒前
小羊佳佳发布了新的文献求助10
13秒前
13秒前
柏林寒冬应助倔驴采纳,获得10
13秒前
14秒前
Rondab应助赵李锋采纳,获得30
14秒前
领导范儿应助jimmyyyyyy采纳,获得10
15秒前
fmr发布了新的文献求助10
16秒前
1561giou应助若晴采纳,获得10
16秒前
17秒前
Chensir发布了新的文献求助10
17秒前
五月发布了新的文献求助10
19秒前
21秒前
21秒前
Q9发布了新的文献求助10
21秒前
DO发布了新的文献求助10
22秒前
科研通AI6应助小羊佳佳采纳,获得10
22秒前
LYJ完成签到,获得积分10
24秒前
Mengfanrong完成签到,获得积分20
25秒前
fmr完成签到,获得积分20
25秒前
田様应助科研爱好者采纳,获得10
26秒前
nn发布了新的文献求助10
26秒前
刀刀发布了新的文献求助10
27秒前
29秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248080
求助须知:如何正确求助?哪些是违规求助? 3781205
关于积分的说明 11871436
捐赠科研通 3434064
什么是DOI,文献DOI怎么找? 1884767
邀请新用户注册赠送积分活动 936342
科研通“疑难数据库(出版商)”最低求助积分说明 842268