Machine Learning-Enabled Time-Resolved Nanozyme-Encoded Recognition of Endogenous Mercaptans for Disease Diagnosis

化学 内生 人工智能 生化工程 生物化学 计算机科学 工程类
作者
Xinyu Chen,Jinjin Liu,Zheng Tang,Shuangquan Liu,Jiayi Peng,Hao Liang,Xiangheng Niu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (19): 10463-10473 被引量:12
标识
DOI:10.1021/acs.analchem.5c01539
摘要

With their important role in regulating intracellular redox balance and maintaining cell homeostasis, endogenous mercaptans are recognized as biomarkers of many diseases in clinical practice, and thus establishing efficient yet simple methods to distinguish and quantify endogenous mercaptans is of great significance for health management. Here, we propose a machine learning-enabled time-resolved nanozyme-encoded strategy to identify endogenous mercaptans in the presence of potential interferents for disease diagnosis. Diethylenetriaminepenta(methylenephosphonic) acid was first employed to coordinate with Mn3+ to prepare a new amorphous nanozyme, which exhibited excellent oxidase-like activity in catalyzing the oxidation of colorless 3,3',5,5'-tetramethylbenzidine to its blue oxide. The addition of endogenous mercaptans (cysteine, homocysteine, and glutathione) could competitively suppress the chromogenic process to different extents due to their discrepant antioxidant abilities, providing specific fingerprints over time for each species. With this mechanism, a time-resolved sensor array with the nanozyme as a sole sensing unit was constructed to accurately identify different types and levels of mercaptans and their various mixtures with the help of pattern recognition. Furthermore, machine learning was combined with the sensor array to construct a stepwise prediction model consisting of concentration-independent classification and concentration-associated regression, which could not only differentiate cancer cells from normal ones based on intracellular glutathione but also evaluate the severity of cardiovascular diseases according to serum homocysteine, showing great application potential in disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
研友_VZG7GZ应助lv采纳,获得10
1秒前
2秒前
AAAA发布了新的文献求助10
2秒前
4秒前
科研通AI6应助求泉采纳,获得10
5秒前
哦嚯发布了新的文献求助10
5秒前
科研通AI2S应助完美砖家采纳,获得10
5秒前
zzzrx发布了新的文献求助10
6秒前
lyj334发布了新的文献求助10
6秒前
7秒前
8秒前
高冷的呆呆鱼完成签到,获得积分10
8秒前
9秒前
9秒前
博一博Xing_完成签到,获得积分10
11秒前
冻结完成签到 ,获得积分10
11秒前
香蕉觅云应助曹梦梦采纳,获得10
11秒前
12秒前
12秒前
13秒前
lqtnb发布了新的文献求助10
14秒前
KKWeng完成签到,获得积分10
14秒前
勤劳平萱发布了新的文献求助30
15秒前
Jasper应助乐观的海采纳,获得10
16秒前
lv发布了新的文献求助10
18秒前
19秒前
风清扬应助zzzrx采纳,获得30
19秒前
momo完成签到 ,获得积分10
19秒前
yafei完成签到 ,获得积分10
20秒前
20秒前
刘乐艺发布了新的文献求助30
21秒前
22秒前
阿蓉啊完成签到 ,获得积分10
22秒前
23秒前
zzlark完成签到,获得积分10
25秒前
机灵绣连完成签到,获得积分10
25秒前
ouyoha完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284421
求助须知:如何正确求助?哪些是违规求助? 4437898
关于积分的说明 13815346
捐赠科研通 4318875
什么是DOI,文献DOI怎么找? 2370751
邀请新用户注册赠送积分活动 1366060
关于科研通互助平台的介绍 1329581