已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of an Explainable Machine Learning Model for Warning of Hepatitis E Virus‐Related Acute Liver Failure

医学 机器学习 人工智能 可解释性 一致性 列线图 回顾性队列研究 队列 内科学 计算机科学
作者
Rui Dong,Zhenghan Luo,Hong Xue,Jianguo Shao,Lin Chen,Wen Jin,Ling Yang,Chao Shen,Minzhi Xu,Mengping Wu,Jie Wang
出处
期刊:Liver International [Wiley]
卷期号:45 (6)
标识
DOI:10.1111/liv.70129
摘要

ABSTRACT Background and Aims Early identification of patients with acute hepatitis E (AHE) who are at high risk of progressing to hepatitis E virus‐related acute liver failure (HEV‐ALF) is crucial for enabling timely monitoring and intervention. This multicentre retrospective cohort study aimed to develop and validate an interpretable machine learning (ML) model for predicting the risk of HEV‐ALF in hospitalised patients with AHE in tertiary care settings. Methods The study cohort included patients admitted to seven tertiary medical centers in Jiangsu, China, between 01 January 2018 and 31 December 2024. Multiple ML algorithms were applied for feature selection and model training. The predictive performance of the models was evaluated in terms of discrimination, calibration and clinical net benefit. The interpretability of the final model was enhanced using the SHapley Additive exPlanations. Results A total of 1912 participants were included in the study. Ten ML models were developed based on seven consensus‐selected baseline features, with the survival gradient boosting machine (GBM) demonstrating superior performance compared to the traditional Cox proportional hazards regression model and other relevant models or scores. The GBM model achieved a Harrell's concordance index of 0.853 (95% CI: 0.791–0.914) in the external validation set. To facilitate clinical application, the GBM model was interpreted globally and locally and deployed as a web‐based tool using the Streamlit‐Python framework. Conclusions The GBM model demonstrated excellent performance in predicting HEV‐ALF risk in hospitalised patients with AHE, offering a promising tool for clinical decision‐making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助小兔叽采纳,获得10
5秒前
小兔叽完成签到,获得积分10
14秒前
打打应助文静不评采纳,获得10
15秒前
15秒前
碳土不凡完成签到 ,获得积分10
18秒前
guan发布了新的文献求助10
18秒前
22秒前
害怕的不评完成签到,获得积分10
26秒前
科研通AI2S应助pinge采纳,获得30
27秒前
34秒前
小兔叽发布了新的文献求助10
38秒前
Ephemeral完成签到 ,获得积分10
40秒前
45秒前
48秒前
慕青应助acow采纳,获得10
49秒前
ccl发布了新的文献求助10
50秒前
学不完了完成签到 ,获得积分10
50秒前
53秒前
itsxm发布了新的文献求助10
55秒前
东哥完成签到,获得积分10
56秒前
58秒前
文静不评发布了新的文献求助10
58秒前
匹诺曹完成签到 ,获得积分10
1分钟前
lisasasasa发布了新的文献求助10
1分钟前
蛋白积聚完成签到,获得积分10
1分钟前
feiCheung完成签到 ,获得积分10
1分钟前
1分钟前
LYJ完成签到,获得积分10
1分钟前
千俞完成签到 ,获得积分10
1分钟前
大黑眼圈完成签到 ,获得积分20
1分钟前
keyan完成签到 ,获得积分10
1分钟前
1分钟前
acow发布了新的文献求助10
1分钟前
cen完成签到,获得积分10
1分钟前
1461完成签到 ,获得积分10
1分钟前
1分钟前
shimhjy应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
shimhjy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352674
关于积分的说明 10359922
捐赠科研通 3068647
什么是DOI,文献DOI怎么找? 1685184
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022