清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identifying Predictors of Failed Back Surgery Syndrome Following Lumbar Spine Surgery

医学 减压 腰椎 背部手术失败 外科 背痛 队列 回顾性队列研究 腰椎 脊柱融合术 内科学 脊髓刺激 替代医学 病理 刺激
作者
Rushmin Khazanchi,Diwakar Kumar,Robert J. Oris,Anitesh Bajaj,Daniel Herrera,Austin R Chen,Rohan Shah,Shravan Asthana,Samuel G. Reyes,Pranav Bajaj,Wellington K. Hsu,Alpesh A. Patel,Srikanth N. Divi
出处
期刊:Spine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/brs.0000000000005411
摘要

Study Design. Retrospective cohort study from a tertiary academic medical center. Objective. To build a prognostic machine learning model to predict 1-year FBSS incidence following lumbar spine surgery Summary of Background Data. A minority of patients who undergo degenerative lumbar spine surgery will have persistent postoperative pain, characterized as “Failed Back Surgery Syndrome” (FBSS). Adequate preoperative identification of patients at risk of having an undesirable outcome after surgery is an essential part of a spine surgeon’s workflow. While several studies have proposed mechanisms and risk factors for FBSS, no studies have developed a prognostic machine learning model to quantify and functionalize predictions. Methods. A cohort of lumbar fusion and lumbar decompression surgeries was queried from a tertiary academic medical center from 2002-2022. Patient and operative characteristics were systematically extracted for each surgery. Several machine learning algorithms were employed and optimized to predict FBSS occurrence within 1 year of surgery. SHAP feature importance values were computed for the top performing model. Results. A total of 10,128 unique lumbar decompression surgeries and 2,890 unique lumbar fusion surgeries were included. The Random Forest model had the highest performance of tested models (AUROC of 0.715 for lumbar decompression, 0.701 for lumbar fusion). For lumbar decompression, the top three predictors of FBSS were absence of microdiscectomy, lack of preoperative immunosuppressant usage, and preoperative benzodiazepine usage. For lumbar fusion, prior FBSS diagnosis, lack of preoperative immunosuppressant usage, and operating room duration were the most important predictors. Other key variables spanned several domains including preoperative medication usage, patient demographics, and operative indications and characteristics. Conclusion. This study demonstrates the successful creation of a prognostic machine learning model for prediction of FBSS within 1 year postoperatively. These models, after external validation, have the potential to be instrumental aspects of a spine surgeon’s workflow. Level of Evidence. 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇飞天下发布了新的文献求助10
1秒前
abtitw完成签到,获得积分10
7秒前
Lrcx完成签到 ,获得积分10
10秒前
张唯勤完成签到,获得积分10
17秒前
噜噜晓完成签到 ,获得积分10
24秒前
Ttimer完成签到,获得积分10
29秒前
zpc猪猪完成签到,获得积分10
35秒前
42秒前
加贝完成签到 ,获得积分10
53秒前
雪山飞龙发布了新的文献求助10
54秒前
hover完成签到,获得积分10
59秒前
Drwang完成签到,获得积分10
1分钟前
yin完成签到,获得积分10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
yyy完成签到 ,获得积分10
1分钟前
rockyshi完成签到 ,获得积分10
1分钟前
小燕子完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
Anonymous完成签到,获得积分10
1分钟前
斯文败类应助devilfish13采纳,获得10
1分钟前
wzz完成签到,获得积分10
1分钟前
1分钟前
devilfish13发布了新的文献求助10
2分钟前
世界和平完成签到 ,获得积分10
2分钟前
赵李锋完成签到,获得积分10
2分钟前
Xenia完成签到 ,获得积分10
2分钟前
研友Bn完成签到 ,获得积分10
2分钟前
t铁核桃1985完成签到 ,获得积分10
2分钟前
ccmxigua应助科研通管家采纳,获得10
2分钟前
张嘉雯完成签到 ,获得积分10
2分钟前
汉堡包应助devilfish13采纳,获得10
2分钟前
渔渔完成签到 ,获得积分10
2分钟前
HLT完成签到 ,获得积分10
2分钟前
BiuBiuBiu完成签到 ,获得积分10
2分钟前
CHEN完成签到 ,获得积分10
2分钟前
单纯的小土豆完成签到 ,获得积分10
2分钟前
2分钟前
devilfish13发布了新的文献求助10
3分钟前
小青年儿完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4765111
求助须知:如何正确求助?哪些是违规求助? 4103420
关于积分的说明 12694759
捐赠科研通 3820691
什么是DOI,文献DOI怎么找? 2108849
邀请新用户注册赠送积分活动 1133316
关于科研通互助平台的介绍 1013601