A Novel Residual Graph Representation Learning Method Towards Multi-Source Data Fusion and Fault Diagnosis of Machinery

残余物 计算机科学 代表(政治) 融合 图形 传感器融合 人工智能 断层(地质) 外部数据表示 模式识别(心理学) 数据挖掘 算法 机器学习 理论计算机科学 地质学 地震学 语言学 哲学 政治 政治学 法学
作者
Z. G. Dai,Weidong Xu,Zhuyun Chen,Kairu Wen,Bin Zhang,Yi He,Weihua Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adc4fb
摘要

Abstract As an important part of an industrial mechanical system, harmonic reducer undertakes the task of high-precision motion transmission. Once a fault occurs and is not handled in time, it may cause huge safety accidents, making comprehensive monitoring and accurate fault diagnosis of the harmonic reducer an important problem. However, the current methods fail to fully exploit the rich information embedded in various data sources, resulting in suboptimal fault diagnosis performance. Moreover, the interactions and dependencies between different data channels are not adequately captured, which hampers the accurate identification of faults. To address these challenges, this paper proposes a multi-source data fusion and fault diagnosis model based on residual graph representation learning. The running state of the harmonic reducer is monitored through a sensor network composed of multi-sensor. To reflect the interaction and dependence between multi-channel data, a signal preprocessing module based on FFT and RadiusGraph is proposed. This module transforms the multi-sensor data into a multi-sensor graph network composed of nodes and weighted edges. The feature representation of the graph is then learned using the bilayer ChebyNet with residual connection (BiCNR) to mine and update the interactions and dependencies between multiple sensors. Finally, based on the learned graph representation, the fault type of the harmonic reducer is diagnosed by the proposed model, and potential faults or anomalies in the device are identified. To verify the method, we designed harmonic reducer fault experiments under different laboratory conditions to diagnose the obtained multi-sensor data using the model. The experimental results show that the proposed model has excellent fault diagnosis performance and outperforms the current methods commonly used for harmonic reducer fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助zake采纳,获得10
1秒前
英勇白莲发布了新的文献求助10
4秒前
4秒前
5秒前
大模型应助调皮的涵山采纳,获得30
6秒前
6秒前
Lucas应助不想长大采纳,获得100
6秒前
fuguiliu发布了新的文献求助10
7秒前
8秒前
孙燕应助博修采纳,获得30
8秒前
苦涩发布了新的文献求助10
10秒前
11秒前
11秒前
Zhang完成签到,获得积分10
12秒前
勤劳宛菡发布了新的文献求助10
13秒前
13秒前
hhh完成签到,获得积分10
15秒前
15秒前
汉堡包应助忧郁的剑鬼采纳,获得10
16秒前
ding应助虚影采纳,获得10
16秒前
17秒前
流星发布了新的文献求助10
17秒前
张平一完成签到 ,获得积分10
17秒前
20秒前
十块小子完成签到,获得积分10
21秒前
yyyyyu发布了新的文献求助10
21秒前
高兴的小完成签到,获得积分10
21秒前
NexusExplorer应助博修采纳,获得10
21秒前
24秒前
25秒前
科研小董完成签到,获得积分10
27秒前
Aqua完成签到 ,获得积分10
28秒前
刘小小123完成签到,获得积分20
29秒前
Zkxxxx发布了新的文献求助10
29秒前
30秒前
31秒前
菠萝完成签到,获得积分20
32秒前
科目三应助欧耶采纳,获得10
34秒前
拥你入怀发布了新的文献求助10
35秒前
菠萝发布了新的文献求助10
35秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906101
求助须知:如何正确求助?哪些是违规求助? 3451681
关于积分的说明 10865958
捐赠科研通 3176999
什么是DOI,文献DOI怎么找? 1755205
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791207