Contrastive Learning with Transformer to Predict the Chronicity of Children with Immune Thrombocytopenia

计算机科学 免疫性血小板减少症 医学 人工智能 免疫学 血小板
作者
Yuntian Wang,Yongqiang Tang,Jingyao Ma,Zhenping Chen,C.Y. Cui,Mingda Li,Runhui Wu,Wensheng Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2025.3551365
摘要

Immune thrombocytopenia (ITP) is a typically self-limiting and immune-mediated bleeding disorder in children. Approximately 20% of children with ITP experience chronicity, leading to reduced quality of life and increased treatment burden. The accurate prediction of chronicity would enable clinicians to make personalized treatment plans at an early stage. However, due to the self-limiting nature of ITP and the scarcity of available children patients, the data presents two prominent issues: small data and imbalanced class, which are unfavorable for effectively training a deep learning model. To handle these issues concurrently, we proposed a novel method that integrates contrastive learning with the Transformer. First, we adopt the FT-Transformer as our backbone, which allows our model to flexibly process heterogeneous tabular data. Second, we amplify and balance the original data via random masking and oversampling, respectively. Lastly, we build contrastive pairs according to the latent representations generated by the FT-Transformer encoder, such that the amplified and oversampled synthetic data can be utilized thoroughly. The experimental results on real-world ITP children data show that our proposal outperforms the state-of-the-art methods, and demonstrate the significant advantages of dealing with insufficient and imbalanced problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助yue采纳,获得10
1秒前
卫傀斗发布了新的文献求助10
2秒前
xuan完成签到,获得积分10
3秒前
6666发布了新的文献求助10
3秒前
JamesPei应助juanjuan采纳,获得10
4秒前
废物自救发布了新的文献求助10
5秒前
爆米花应助okjiujiu采纳,获得10
6秒前
7秒前
8秒前
卫傀斗完成签到,获得积分10
11秒前
Transecond发布了新的文献求助10
12秒前
12秒前
晚意意意意意完成签到 ,获得积分10
13秒前
Zoom发布了新的文献求助10
15秒前
15秒前
17秒前
ASA完成签到,获得积分10
17秒前
18秒前
20秒前
okjiujiu发布了新的文献求助10
20秒前
黄小北发布了新的文献求助30
22秒前
怕黑香菇发布了新的文献求助10
24秒前
Zoom完成签到,获得积分10
25秒前
重要的绯完成签到,获得积分10
33秒前
今后应助我不是阿呆采纳,获得10
34秒前
35秒前
HQZ完成签到,获得积分10
35秒前
Yiping应助89757采纳,获得10
36秒前
Alex完成签到,获得积分10
38秒前
40秒前
41秒前
41秒前
zwy完成签到 ,获得积分10
43秒前
CodeCraft应助稀饭采纳,获得10
44秒前
晓雯发布了新的文献求助10
44秒前
longlian57发布了新的文献求助10
46秒前
47秒前
华西招生版完成签到,获得积分10
1分钟前
GGGrigor完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385