神经形态工程学
材料科学
突触
光电子学
响应度
人工神经网络
长时程增强
计算机科学
纳米技术
人工智能
神经科学
光电探测器
化学
生物
生物化学
受体
作者
Jiawei Chen,Yuqing Huang,Hui Wen,Yujing Wang,Huiying Li,Xinyuan Zheng,Xin Wang,Zhanhong Ma,Ting Wang,Sen Yan,Kaiyou Wang,Lixia Zhao
标识
DOI:10.1002/adom.202501078
摘要
Abstract Neuromorphic computing architecture, inspired by biological systems, is one of the key solutions to overcoming the von Neumann bottleneck. In particular, as a core component of artificial visual perception systems, optoelectronic synapses with high sensitivity and long memory retention hold significant potential applications. Herein, a two‐terminal GaN porous nanocone array (PNA) optoelectronic artificial synapse is designed and fabricated. The unique structure of the GaN PNA significantly enhances light absorption, achieving a responsivity of up to 2.07 × 10 6 A W −1 and a specific detectivity ( D* ) of 3.50 × 10 15 Jones. The persistent photoconductivity (PPC) effect, originated from surface states, exhibits a remarkably long decay characteristic time of up to 1204 s. This enables the synapses to emulate various key synaptic functions, including paired‐pulse facilitation (PPF), memory‐forgetting‐relearning processes, and the transition from short‐term potentiation (STP) to long‐term potentiation (LTP). Moreover, the GaN PNA optoelectronic artificial synapse demonstrates exceptional performance in artificial visual neural networks with a recognition accuracy approaching 93%. This work presents a novel solution for enhancing computational efficiency in artificial visual neural networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI