Prediction of Typical Power Plant Circulating Cooling Tower Blowdown Water Quality Based on Explicable Integrated Machine Learning

锅炉排污 冷却塔 水冷 发电站 塔楼 功率(物理) 计算机科学 环境科学 工程类 机械工程 电气工程 土木工程 物理 热力学 入口
作者
Y. H. Wan,Xing Tian,Hongwen He,Tong Peng,Ruiying Gao,Xiaohui Ji,Shaojie Li,Shan Luo,Wei Li,Zhenguo Chen
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:13 (6): 1917-1917
标识
DOI:10.3390/pr13061917
摘要

This paper establishes an explicable integrated machine learning model for predicting the discharge water quality in a circulating cooling water system of a power plant. The performance differences between three deep learning models, a Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM), and a Convolutional Neural Network (CNN), and traditional machine learning models, namely eXtreme Gradient Boosting (XGboost) and Support Vector Machine (SVM), were evaluated and compared. The TCN model has high fitting accuracy and low error in predicting ammonia nitrogen, nitrate nitrogen, total nitrogen, chemical oxygen demand (COD), and total phosphorus in the effluent of a circulating cooling tower. Compared to other traditional machine learning models, the TCN has a larger R2 (maximum 0.911) and lower Root Mean Square Error (RMSE, minimum 0.158) and Mean Absolute Error (MAE, minimum 0.118), indicating the TCN has better feature extraction and fitting performance. Although the TCN takes additional time, it is generally less than 1 s, enabling the real-time prediction of drainage water quality. The main water quality indices have the greatest causal inference relationship with those of makeup water, followed by the concentration ratio, indicating that concentrations of ammonia nitrogen, nitrate nitrogen, total nitrogen, and COD have a more decisive impact. Shapley Additive Explanations (SHAP) analysis further reveals that the concentration ratio has a weaker decisive impact on circulating cooling water drainage quality. The results of this study facilitate the optimization of industrial water resource management and offer a feasible technical pathway for water resource utilization in power plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助万默采纳,获得10
刚刚
DAdump1ing发布了新的文献求助20
1秒前
1秒前
1秒前
Cyrus2022发布了新的文献求助10
2秒前
王忘汪发布了新的文献求助10
3秒前
3秒前
3秒前
fmwang完成签到,获得积分10
3秒前
大个应助憨憨兔子采纳,获得10
3秒前
4秒前
4秒前
星辰大海应助wyx采纳,获得10
4秒前
呆萌的绿兰完成签到,获得积分10
5秒前
赘婿应助seedcode采纳,获得10
5秒前
5秒前
6秒前
6秒前
xslj发布了新的文献求助20
6秒前
CipherSage应助长安采纳,获得10
6秒前
6秒前
壳儿小小发布了新的文献求助10
7秒前
瘦瘦电脑完成签到 ,获得积分10
7秒前
纯真大门发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
小乐发布了新的文献求助10
10秒前
lvlijun发布了新的文献求助10
10秒前
zyyyy完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
超帅的岱周完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
赘婿应助zhihua采纳,获得30
15秒前
liukanhai完成签到,获得积分10
15秒前
17秒前
Ava应助长情的秋凌采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462427
求助须知:如何正确求助?哪些是违规求助? 3925693
关于积分的说明 12181937
捐赠科研通 3578067
什么是DOI,文献DOI怎么找? 1965760
邀请新用户注册赠送积分活动 1004486
科研通“疑难数据库(出版商)”最低求助积分说明 898942