Deep learning-based model for predicting student learning behavior: A pathway to early intervention and enhanced outcomes

干预(咨询) 深度学习 人工智能 计算机科学 机器学习 心理学 精神科
作者
Yingbo Zhang,Juanwei Li
出处
期刊:Journal of Computational Methods in Sciences and Engineering [IOS Press]
标识
DOI:10.1177/14727978251322332
摘要

In the realm of educational data science, the utilization of advanced analytical techniques is increasingly pivotal for optimizing pedagogical methods and implementing early interventions. This study introduces a predictive model employing deep learning technology for the analysis of student learning behavior. The model’s primary objective is to detect potential learning impediments at nascent stages, thereby facilitating timely and effective educational strategies to augment learning outcomes. Despite strides in behavioral prediction, challenges persist due to the dynamic and complex nature of educational data. Addressing these challenges, the proposed model integrates sequence pattern recognition with time-series analysis. The application of the PrefixSpan algorithm initiates the process, identifying sequential patterns in student learning behaviors and elucidating their temporal progression. Subsequently, an advanced ordered funnel analysis algorithm is employed, unveiling directional associations among diverse learning patterns. The final phase involves applying independent component analysis (ICA) to enhance the multi-layer long short-term memory (Multi-LSTM) network’s structure, thus enabling precise predictions of student outcomes in the context of early interventions. The results underscore the efficacy of deep learning in deciphering intricate behavioral patterns and underscore its potential in personalized educational interventions. This comprehensive approach demonstrates the model’s capacity to harness the intricacies of educational data, thereby contributing significantly to the field of personalized education and precise teaching methodologies. The innovative aspect of this study lies in the comprehensive application of the PrefixSpan algorithm, the ordered funnel analysis algorithm, and the Multi-LSTM network architecture. A holistic model for predicting student learning behavior is proposed, coupled with early interventions, which enables educators to better understand student learning conditions and implement effective measures to enhance student learning outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SIC小旋风发布了新的文献求助10
2秒前
小迷糊完成签到,获得积分10
2秒前
kuku发布了新的文献求助10
2秒前
77完成签到,获得积分10
2秒前
qqxin发布了新的文献求助10
3秒前
科研通AI5应助甜甜访波采纳,获得10
3秒前
快乐银耳汤完成签到,获得积分20
3秒前
白日梦完成签到,获得积分10
3秒前
3秒前
借两颗星星完成签到,获得积分10
4秒前
于鹏发布了新的文献求助10
4秒前
Mine完成签到,获得积分10
4秒前
4秒前
4秒前
lshl2000完成签到,获得积分10
5秒前
酸菜萌萌鱼完成签到,获得积分10
5秒前
研友_VZG7GZ应助GuanguanYaa采纳,获得10
5秒前
娃哈哈完成签到,获得积分10
5秒前
科研通AI5应助要没时间了采纳,获得10
5秒前
Ir发布了新的文献求助10
5秒前
6秒前
李爱国应助大意的酒窝采纳,获得10
6秒前
落后秋荷给落后秋荷的求助进行了留言
6秒前
6秒前
chang完成签到,获得积分10
8秒前
xdf发布了新的文献求助10
8秒前
123456完成签到,获得积分20
8秒前
9秒前
APS发布了新的文献求助10
9秒前
10秒前
高挑的果汁完成签到,获得积分10
10秒前
11秒前
飘逸绮南完成签到,获得积分10
11秒前
琼仔仔发布了新的文献求助10
11秒前
QLy完成签到,获得积分10
11秒前
11秒前
12秒前
11完成签到,获得积分20
12秒前
害羞静柏完成签到 ,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808716
求助须知:如何正确求助?哪些是违规求助? 3353476
关于积分的说明 10365281
捐赠科研通 3069664
什么是DOI,文献DOI怎么找? 1685735
邀请新用户注册赠送积分活动 810675
科研通“疑难数据库(出版商)”最低求助积分说明 766286