折叠(DSP实现)
蛋白质折叠
化学
计算机科学
生物化学
工程类
结构工程
作者
Henry R. Childs,Pei Zhou,Bruce R. Donald
标识
DOI:10.1101/2025.03.14.643307
摘要
Due to the favorable chemical properties of mirrored chiral centers (such as improved stability, bioavailability, and membrane permeability) the computational design of D-peptides targeting biological L-proteins is a valuable area of research. To design these structures in silico , a computational workflow should correctly dock and fold a peptide while maintaining chiral centers. The latest AlphaFold 3 (AF3) from Abramson et al. (2024) enforces a strict chiral violation penalty to maintain chiral centers from model inputs and is reported to have a low chiral violation rate of only 4.4% on a PoseBusters benchmark containing diverse chiral molecules. Herein, we report the results of 3,255 experiments with AF3 to evaluate its ability to predict the fold, chirality, and binding pose of D-peptides in heterochiral complexes. Despite our inputs specifying explicit D-stereocenters, we report that the AF3 chiral violation for D-peptide binders is much higher at 51% across all evaluated predictions; on average the model is as accurate as chance (random chirality choice, L or D, for each peptide residue). Increasing the number of seeds failed to improve this violation rate. The AF3 predictions exhibit incorrect folds and binding poses, with D-peptides commonly oriented incorrectly in the L-protein binding pocket. Confidence metrics returned by AF3 also fail to distinguish predictions with low chirality violation and correct docking vs. predictions with high chirality violation and incorrect docking. We conclude that AF3 is a poor predictor of D-peptide chirality, fold, and binding pose.
科研通智能强力驱动
Strongly Powered by AbleSci AI