亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prioritization of Unknown LC-HRMS Features Based on Predicted Toxicity Categories

优先次序 毒性 化学毒性 计算生物学 化学 环境化学 生化工程 计算机科学 人工智能 生物 工程类 管理科学 有机化学
作者
Viktoriia Turkina,Jelle T. Gringhuis,Sanne Boot,Annemieke Petrignani,Garry L. Corthals,Antonia Praetorius,Jake O’Brien,Saer Samanipour
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c13026
摘要

Complex environmental samples contain a diverse array of known and unknown constituents. While liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) nontargeted analysis (NTA) has emerged as an essential tool for the comprehensive study of such samples, the identification of individual constituents remains a significant challenge, primarily due to the vast number of detected features in each sample. To address this, prioritization strategies are frequently employed to narrow the focus to the most relevant features for further analysis. In this study, we developed a novel prioritization strategy that directly links fragmentation and chromatographic data to aquatic toxicity categories, bypassing the need for identification of individual compounds. Given that features are not always well-characterized through fragmentation, we created two models: (1) a Random Forest Classification (RFC) model, which classifies fish toxicity categories based on MS1, retention, and fragmentation data─expressed as cumulative neutral losses (CNLs)─when fragmentation information is available, and (2) a Kernel Density Estimation (KDE) model that relies solely on retention time and MS1 data when fragmentation is absent. Both models demonstrated accuracy comparable to that of structure-based prediction methods. We further tested the models on a pesticide mixture in a tea extract measured by LC-HRMS, where the CNL-based RFC model achieved 0.76 accuracy and the KDE model reached 0.61, showcasing their robust performance in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
实力不允许完成签到 ,获得积分10
16秒前
小梦完成签到,获得积分10
49秒前
橘橘橘子皮完成签到 ,获得积分10
49秒前
研友_8y2G0L完成签到,获得积分10
51秒前
丘比特应助科研通管家采纳,获得10
1分钟前
1分钟前
Xdz完成签到 ,获得积分10
1分钟前
2分钟前
3分钟前
ccccx发布了新的文献求助10
3分钟前
3分钟前
碧蓝可仁完成签到 ,获得积分10
4分钟前
4分钟前
manmanzhong完成签到 ,获得积分10
5分钟前
通科研完成签到 ,获得积分10
5分钟前
xiaolang2004完成签到,获得积分10
6分钟前
6分钟前
kokoko完成签到,获得积分10
6分钟前
6分钟前
violet兰发布了新的文献求助10
6分钟前
6分钟前
酷波er应助violet兰采纳,获得10
6分钟前
科研通AI2S应助Sandy采纳,获得10
6分钟前
ccccx发布了新的文献求助10
6分钟前
充电宝应助zhouleiwang采纳,获得10
7分钟前
JamesPei应助LYL采纳,获得10
8分钟前
桐桐应助zhouleiwang采纳,获得10
8分钟前
8分钟前
bc应助Sandy采纳,获得30
8分钟前
zhouleiwang发布了新的文献求助10
8分钟前
8分钟前
spujo应助zhu采纳,获得10
8分钟前
传奇完成签到 ,获得积分10
8分钟前
8分钟前
zhouleiwang发布了新的文献求助10
9分钟前
ding应助zhouleiwang采纳,获得10
9分钟前
9分钟前
David Zhang发布了新的文献求助10
9分钟前
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788291
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263204
捐赠科研通 3049588
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511