星团(航天器)
等变映射
计算机科学
相(物质)
人工神经网络
谱线
化学物理
物理
数据挖掘
人工智能
数学
计算机网络
量子力学
纯数学
作者
Aman Jindal,Philipp Schienbein,Banshi Das,Dominik Marx
标识
DOI:10.1021/acs.jctc.5c00420
摘要
Calculating accurate IR spectra from molecular dynamics simulations is crucial for understanding structural dynamics and benchmarking simulations. While machine learning has accelerated such calculations, leveraging finite-cluster data to compute condensed-phase IR spectra remains unexplored. In this work, we address a fundamental question: Can a machine learning model trained exclusively on electronic structure calculations of finite-size clusters reproduce the bulk IR spectrum? Using the atomic polar tensor as a target training property, we demonstrate that the corresponding equivariant neural network accurately recovers the bulk IR spectrum of liquid water, establishing the key link between finite-cluster data and bulk properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI