已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Defect-Boosted Piezoelectric and Nanozymatic Synergetic Catalysis for Deep Bacterial Abscess Therapy

催化作用 压电 材料科学 纳米技术 脓肿 医学 化学 外科 复合材料 有机化学
作者
Chao Peng,Wenting Wu,Hong Huo,Jing Li,Erkang Wang
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c05806
摘要

Piezocatalytic therapy, distinguished by its superior tissue penetration under ultrasound activation and its low dependence on the oxygen concentration for generating multiple reactive oxygen species (ROS), has emerged as a promising strategy for deep abscess treatment. However, its efficacy remains constrained by a suboptimal bandgap, weak piezoelectric responses, and inadequate surface-active sites. To address these limitations, a facile Ru-atom doping strategy is first proposed using the Bi4O5Br2-based nanosystem (Bi4O5Br2@Ru) to tailor the bandgap and boost the piezo- and enzyme-like catalysis. The Ru dopants induce lattice distortions and elevate oxygen vacancies simultaneously, thereby enhancing piezoelectric responses while conferring peroxidase (POD)- and catalase (CAT)-like enzymatic activities. Under ultrasound excitation, the piezoelectric field optimizes the conduction band alignment of Bi4O5Br2@Ru, enhancing its POD-like activity to generate multiple ROS including ·OH, 1O2, and ·O2-. The mixed Ru (III/IV) valence states in Bi4O5Br2@Ru induce glutathione depletion, thereby further enhancing the oxidative stress capacity to combat biofilms. The enhanced CAT-like activity further alleviates hypoxia within biofilm microenvironments. RNA transcriptomic analysis confirms that Bi4O5Br2@Ru disrupts energy metabolism by interfering with the tricarboxylic acid cycle. The dual-modality therapy leverages doping engineering to seamlessly combine piezoelectric properties with enzyme-like catalytic functions, offering a highly promising therapeutic strategy for the treatment of deep-seated infectious diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助一寸一寸采纳,获得10
5秒前
5秒前
充电宝应助ziyue采纳,获得10
6秒前
传奇3应助齐俊博采纳,获得10
7秒前
欣然完成签到 ,获得积分10
9秒前
10秒前
13秒前
科研通AI6应助lululucy采纳,获得10
14秒前
英俊的铭应助Willer采纳,获得10
15秒前
17秒前
18秒前
19秒前
20秒前
RuiBigHead发布了新的文献求助10
20秒前
chowjb完成签到,获得积分10
20秒前
瑶我好看发布了新的文献求助10
22秒前
23秒前
细心颖发布了新的文献求助10
24秒前
一寸一寸发布了新的文献求助10
25秒前
26秒前
28秒前
煎包下油锅完成签到,获得积分10
30秒前
高贵芷蝶完成签到 ,获得积分10
30秒前
CipherSage应助暴躁的芷巧采纳,获得10
31秒前
静静发布了新的文献求助10
33秒前
34秒前
我是老大应助bierbia采纳,获得10
36秒前
36秒前
深情安青应助谨ko采纳,获得10
38秒前
aaaa发布了新的文献求助50
39秒前
40秒前
呼延曼青发布了新的文献求助10
41秒前
44秒前
45秒前
呼延曼青完成签到,获得积分10
48秒前
伏伏雅逸发布了新的文献求助30
49秒前
Willer发布了新的文献求助10
49秒前
49秒前
49秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4221706
求助须知:如何正确求助?哪些是违规求助? 3755071
关于积分的说明 11806023
捐赠科研通 3418354
什么是DOI,文献DOI怎么找? 1876258
邀请新用户注册赠送积分活动 929875
科研通“疑难数据库(出版商)”最低求助积分说明 838246