催化作用
光催化
酰亚胺
密度泛函理论
光化学
电子转移
材料科学
解吸
纳米颗粒
化学
漫反射红外傅里叶变换
傅里叶变换红外光谱
激发态
吸附
纳米技术
化学工程
物理化学
计算化学
有机化学
原子物理学
物理
工程类
作者
Bo Su,Sibo Wang,Wandong Xing,Kunlong Liu,Sung‐Fu Hung,Xiong Chen,Yuanxing Fang,Guigang Zhang,Huabin Zhang,Xinchen Wang
标识
DOI:10.1002/anie.202505453
摘要
Photocatalytic CO2 conversion with H2O to carbonaceous fuels is a desirable strategy for CO2 management and solar utilization, yet its efficiency remains suboptimal. Herein, efficient and durable CO2 photoreduction is realized over a RuNPs/Ru‐PHI catalyst assembled by anchoring Ru single atoms (SAs) and nanoparticles (NPs) onto poly(heptazine imide) (PHI) via the in‐plane Ru‐N4 coordination and interfacial Ru‐N bonds, respectively. This catalyst shows an unsurpassed CO production (32.8 μmol h‐1), a record‐high apparent quantum efficiency (0.26%) beyond 800 nm, and the formation of the valuable H2O2. Ru SAs tune PHI’s electronic structure to promote in‐plane charge transfer to Ru NPs, forming a built‐in electron field at the interface, which directs electron‐hole separation and rushes excited electron movement from Ru‐PHI to Ru NPs. Simultaneously, Ru SAs introduce an impurity level in PHI to endow long‐wavelength photoabsorption, while Ru NPs strengthen CO2 adsorption/activation and expedite CO desorption. These effects of Ru species together effectively ensure CO2‐to‐CO conversion. The CO2 reduction on the catalyst is revealed to follow the pathway CO2→ *CO2→ *COOH→ *CO→ CO, based on the intermediates identified by in situ diffuse reflectance infrared Fourier transform spectroscopy and further supported by density functional theory calculations.
科研通智能强力驱动
Strongly Powered by AbleSci AI