Broad-ESN Based on Radical Activation Function for Predicting Time Series With Multiple Variables

系列(地层学) 时间序列 计算机科学 计量经济学 统计 数学 生物 古生物学
作者
Yuanpeng Gong,Shuxian Lun,Ming Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2025.3563937
摘要

Multidimensional time series (MTS) has the unique characteristics of multidimensionality and multifeature, so it becomes particularly important when choosing a prediction model. Therefore, this article proposes a novel broad echo state network (Broad-ESN) based on radical activation function (RB-ESN). First, a radical activation function is proposed to solve the problem of gradient disappearing in the iterative process and is more conducive to dealing with complex data patterns. Second, the sliding window is used to extract the features of MTS. The number of reservoirs is determined by the number of features. Third, by using Cubic chaotic mapping to initialize the pied kingfisher optimizer (PKO) population, the search space can be effectively expanded, and high-quality random sequences can be generated. Then, the exponential spiral equation is used to optimize the position update equation of the pied kingfisher, which solves the problem of local optimization. Finally, the results show that the model proposed in this article is significantly superior to other models in forecasting performance, with high prediction accuracy and low error.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助1234采纳,获得10
1秒前
Tetrahydron发布了新的文献求助10
2秒前
木子青山发布了新的文献求助10
2秒前
2秒前
lwb完成签到,获得积分10
2秒前
WYang完成签到,获得积分10
3秒前
3秒前
青街向晚发布了新的文献求助10
3秒前
4秒前
winifred完成签到 ,获得积分10
4秒前
laallaall完成签到,获得积分20
4秒前
勤恳的巧蕊完成签到,获得积分10
5秒前
宁静致远完成签到,获得积分10
5秒前
6秒前
andou完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助Accept采纳,获得30
7秒前
7秒前
iceburg发布了新的文献求助10
7秒前
jiand911完成签到 ,获得积分10
7秒前
故意的秋烟完成签到,获得积分10
7秒前
8秒前
yuyuxiaoyu发布了新的文献求助10
8秒前
9秒前
happy完成签到,获得积分10
10秒前
yanjie发布了新的文献求助10
10秒前
棕熊熊应助调皮帆布鞋采纳,获得10
10秒前
江伊发布了新的文献求助10
10秒前
John完成签到 ,获得积分10
11秒前
seasonweng发布了新的文献求助10
11秒前
cdercder应助黄焖鸡采纳,获得10
11秒前
Tetrahydron完成签到,获得积分20
11秒前
典雅的静发布了新的文献求助10
11秒前
登录中发布了新的文献求助10
11秒前
11秒前
12秒前
Singularity应助柳白采纳,获得10
12秒前
好啊哈发布了新的文献求助10
12秒前
熊莉关注了科研通微信公众号
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816