Turbulent amplification mechanism and inter-component energy transfer in strong and weak shock-wave turbulence boundary layer interaction

湍流 边界层 机械 物理 冲击波 湍流动能 休克(循环) 组分(热力学) 能量转移 机制(生物学) 经典力学 热力学 原子物理学 量子力学 医学 内科学
作者
Xin Zhang,Mingze Han,Denggao Tang,Feng Qu,Chao Yan
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1019
标识
DOI:10.1017/jfm.2025.10616
摘要

Turbulence amplification is crucial in shock-wave/turbulent boundary layer interaction (SWTBLI). To examine the impact of interaction intensity on turbulence amplification and inter-component energy transfer, direct numerical simulations of impinging oblique shock reflections at strong ( $37^\circ$ ) and weak ( $33.2^\circ$ ) incident angles are conducted. The results indicate that strong interaction generates a larger permanent separation zone, featuring the unique ‘oblique platform’ in Reynolds stress peaks and ‘secondary turbulence amplification’ downstream. Reynolds stress budget and spanwise spectral analyses reveal that $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ and $-\!\widetilde{\ u^{\prime\prime}v^{\prime\prime}}$ amplify primarily by production terms. $u''$ , $v''$ and $w''$ represent the streamwise, wall-normal and spanwise velocity fluctuations. At the investigated Reynolds number, deceleration effect dominates the initial amplification of $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ , influencing multi-scale wall-bounded turbulence structures, while shear effect remains active along the shear layer and may primarily affects streaky structures. The initial amplification of $-\!\widetilde{\ u^{\prime\prime}v^{\prime\prime}}$ is driven by the adverse pressure gradient, which reshapes the velocity profile and affects the wall-normal velocity. The primary energy for $\!\widetilde{\ v^{\prime\prime}v^{\prime\prime}}$ and $\widetilde {w^{\prime \prime}w^{\prime \prime}}$ amplification originates from $\widetilde{ u^{\prime \prime}u^{\prime \prime}}$ via the pressure-strain term. The delayed amplification of $\!\widetilde{\ v^{\prime\prime}v^{\prime\prime}}$ is influenced by its production term and energy redistribution, with $\widetilde {w^{\prime \prime}w^{\prime \prime}}$ exhibiting higher spectral consistency with $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ and receiving more energy. In strong interaction, the ‘oblique platform’ serves as a stable dissipation region, formed by increased separation–incident shock distance, characterised by progressively concentrated stress spectra and the transition to large-scale streaks. The downstream ‘secondary amplification’ process resembles the initial amplification near the separation shock foot, driven by intermittent compression waves that strengthen shear instabilities and the deceleration effect. These findings detail the streamwise stress evolution, providing a more comprehensive turbulence amplification mechanism in SWTBLI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue发布了新的文献求助10
刚刚
1秒前
2秒前
Criminology34应助青柠七号站采纳,获得10
2秒前
2秒前
在水一方应助Bu采纳,获得10
3秒前
岁峰柒发布了新的文献求助10
3秒前
田様应助冬冬采纳,获得10
3秒前
灯箱发布了新的文献求助10
4秒前
4秒前
西瓜瓜发布了新的文献求助10
5秒前
5秒前
6秒前
why发布了新的文献求助10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
小吕发布了新的文献求助10
7秒前
8秒前
善学以致用应助仁爱小凝采纳,获得10
8秒前
8秒前
科研通AI6应助123lx采纳,获得10
9秒前
搜集达人应助小马嘻嘻采纳,获得10
10秒前
西瓜头发布了新的文献求助10
10秒前
ERIS发布了新的文献求助10
11秒前
悦耳白山发布了新的文献求助10
11秒前
你66发布了新的文献求助10
12秒前
李大太阳发布了新的文献求助10
12秒前
Akim应助科研眼镜蛇采纳,获得30
13秒前
灯箱发布了新的文献求助10
13秒前
13秒前
13秒前
青石发布了新的文献求助10
16秒前
岁峰柒完成签到,获得积分10
16秒前
烟花应助悦耳白山采纳,获得10
17秒前
demo完成签到,获得积分10
17秒前
此木本去一应助李海艳采纳,获得10
19秒前
111发布了新的文献求助10
20秒前
英姑应助你66采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715