已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

From Effort Reduction to Effort Management: An Expectancy Theory Perspective on Professionals’ Work Practices with Generative AI

期望理论 透视图(图形) 生成语法 工作(物理) 还原(数学) 知识管理 计算机科学 工程类 管理科学 心理学 人工智能 数学 社会心理学 机械工程 几何学
作者
Lucas Memmert,Daria Soroko,Eva Bittner
出处
期刊:Business & Information Systems Engineering [Springer Nature]
卷期号:67 (5): 615-635
标识
DOI:10.1007/s12599-025-00960-4
摘要

Abstract Generative Artificial Intelligence (GenAI) is adopted by knowledge workers to boost productivity, yet its specific characteristics such as probabilistic outputs and human-level content generation may change how professionals think about their effort. Prior literature has warned about unintended side effects of AI, but experiments on effort reduction when working with AI – which could threaten performance – reported mixed results. GenAI’s rapid adoption combined with its specific characteristics make it critical and timely to clarify how GenAI influences knowledge workers’ effort in professional settings. The qualitative study draws on 21 interviews with knowledge workers who frequently use GenAI for work. A directed content analysis, guided by expectancy theory and social loafing frameworks, revealed that most interviewees do not simply reduce effort, but rather strategically reallocate or even increase effort. They continuously learn to steer GenAI, viewing themselves as process administrators. The traditional group-based mechanisms of reduced effort or diffused responsibility do not seem to be directly transferable to human–GenAI dyads in professional settings. By revealing that GenAI reshapes the factors that influence effort rather than simply eroding motivation, providing a multifaceted view of effort investment beyond mere reduction, and highlighting the interplay between human relationships and GenAI-facilitated work, this research advances the discourse on human-(Gen)AI dynamics and the unintended consequences of (Gen)AI. Recognizing these shifts when setting policies and expectations enables organizations to benefit from GenAI’s potential while mitigating potential risks to performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴发布了新的文献求助10
2秒前
3秒前
岳南希发布了新的文献求助10
3秒前
浮游应助窦窦窦窦窦采纳,获得10
3秒前
Hedy发布了新的文献求助10
3秒前
4秒前
左鞅完成签到 ,获得积分10
7秒前
王盼发布了新的文献求助10
8秒前
小二郎应助柠檬泡芙采纳,获得10
10秒前
上官若男应助lmq采纳,获得10
12秒前
陈陈要毕业完成签到,获得积分20
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Magali应助科研通管家采纳,获得30
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
小杜完成签到 ,获得积分10
14秒前
14秒前
栖遇完成签到 ,获得积分10
14秒前
15秒前
JamesPei应助Jane采纳,获得10
15秒前
Marlo完成签到,获得积分10
16秒前
17秒前
17秒前
哈基米南北绿豆完成签到 ,获得积分10
17秒前
Hello应助你好好想想采纳,获得10
18秒前
20秒前
Marlo发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312379
求助须知:如何正确求助?哪些是违规求助? 4456101
关于积分的说明 13865341
捐赠科研通 4344497
什么是DOI,文献DOI怎么找? 2385924
邀请新用户注册赠送积分活动 1380277
关于科研通互助平台的介绍 1348681