The transformative role of machine learning in advancing MOF membranes for gas separations

转化式学习 气体分离 纳米技术 材料科学 化学 化学工程 工艺工程 工程类 社会学 教育学 生物化学
作者
Pelin Sezgin,Seda Keskın
出处
期刊:Chemical physics reviews [American Institute of Physics]
卷期号:6 (3)
标识
DOI:10.1063/5.0278371
摘要

Metal-organic frameworks (MOFs) have been widely recognized for their potential as gas separation membranes thanks to their unique structural properties and high performance to selectively separate different types of gas molecules. MOF membranes offer great potential to replace conventional membrane materials in addressing environmental challenges like carbon capture. Experimental fabrication and testing of a single MOF membrane, even for a single type of gas separation, requires significant resources and time. Therefore, computational modeling of MOF membranes, more specifically high-throughput molecular simulations of MOFs, for various types of gas separations has been very useful in accelerating the discovery of novel MOF membranes. With the ever-increasing number of synthesized and hypothetical MOFs, reaching up to several million material candidates, brute-force molecular simulations are no longer sufficient to comprehensively explore the vast MOF space. Integration of machine learning (ML) approaches with molecular simulations has very recently accelerated materials discovery in the field of MOF membranes. ML has been very useful not only for predicting the key membrane properties of MOF membranes such as gas permeability and selectivity but also for uncovering the hidden structure-performance correlations. Compared to experimental methods and classical molecular simulations, ML offers similar accuracy at a fraction of the cost for the design and discovery of high-performing MOF membranes. This perspective focuses on the state-of-the-art ML applications in the field of MOF membranes, discusses the recent advances in this emerging field, and addresses current challenges and future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Medical_Monk完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
tengyier发布了新的文献求助10
3秒前
kc135完成签到,获得积分10
3秒前
4秒前
wbj0722完成签到,获得积分10
5秒前
7秒前
8秒前
香蕉觅云应助G浅浅采纳,获得10
8秒前
毕双洲完成签到,获得积分10
9秒前
科研通AI5应助peng采纳,获得10
10秒前
10秒前
kingwill应助火龙果采纳,获得20
11秒前
11秒前
充电宝应助自然的尔琴采纳,获得20
12秒前
研友_VZG7GZ应助tengyier采纳,获得10
13秒前
14秒前
lx发布了新的文献求助10
14秒前
香蕉觅云应助G浅浅采纳,获得10
14秒前
草玉梅皂苷完成签到,获得积分20
16秒前
17秒前
19秒前
摇滚小鳄鱼完成签到,获得积分20
19秒前
Lucas应助G浅浅采纳,获得10
21秒前
驼驼完成签到 ,获得积分10
21秒前
NexusExplorer应助珂珂采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
moming发布了新的文献求助10
23秒前
23秒前
24秒前
TiamQHF完成签到,获得积分10
24秒前
打打应助sky采纳,获得10
26秒前
驼驼关注了科研通微信公众号
27秒前
香蕉觅云应助G浅浅采纳,获得10
28秒前
TiamQHF发布了新的文献求助10
30秒前
JI完成签到,获得积分20
31秒前
S7完成签到,获得积分20
31秒前
宇宙超人007008完成签到,获得积分10
34秒前
聪慧小霜应助阿波采纳,获得20
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4314308
求助须知:如何正确求助?哪些是违规求助? 3833601
关于积分的说明 11993192
捐赠科研通 3473844
什么是DOI,文献DOI怎么找? 1905019
邀请新用户注册赠送积分活动 951692
科研通“疑难数据库(出版商)”最低求助积分说明 853218