材料科学
催化作用
海水
分解水
异质结
无机化学
接口(物质)
化学工程
光催化
光电子学
海洋学
复合材料
生物化学
地质学
工程类
化学
毛细管作用
毛细管数
作者
Lü Peng,Juanjuan Huo,Mingjin Cui,Yuhai Dou,Wenxian Li,Huan Liu,Zhongchao Bai,Shi Xue Dou,Riyue Ge
标识
DOI:10.1002/adfm.202516798
摘要
Abstract The development of efficient and durable electrocatalysts for the hydrogen evolution reaction (HER) in alkaline seawater electrolytes remains a formidable challenge, hindered by sluggish reaction kinetics and chloride‐induced corrosion. Herein, a synergistic interface engineering strategy is developed to fabricate hierarchical Ni 0.2 Mo 0.8 N/MoO 2 heterostructured rod arrays composed of nanoparticle assemblies. This design integrates conductive Ni 0.2 Mo 0.8 N domains with MoO 2 phases, leveraging metal–support interactions to enhance water adsorption/dissociation kinetics and proton adsorption/activation capacity. Consequently, this catalyst achieves ultralow overpotentials of 30/212 mV (alkaline freshwater) and 44/217 mV (alkaline seawater) to drive current densities of 100/1000 mA cm −2 , respectively, outperforming commercial Pt/C and state‐of‐the‐art transition metal‐based catalysts. Notably, in chloride‐containing alkaline seawater, it demonstrates remarkable stability by sustaining 200 mA cm −2 for 550 h. Theoretical calculations reveal that the Ni 0.2 Mo 0.8 N/MoO 2 heterointerface effectively modulates the electronic structure, significantly lowering the energy barriers for water dissociation and optimizing the adsorption/desorption capacity of hydrogen intermediates, ultimately enhancing catalytic performance. This work may provide a novel design framework for in situ construction of heterojunction catalytic systems, enabling industrial‐scale energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI