An Explainable Deep Learning Model for Focal Liver Lesion Diagnosis Using Multiparametric MRI

医学 分割 人工智能 Lift(数据挖掘) 考试(生物学) 医学物理学 前瞻性队列研究 放射科 机器学习 外科 计算机科学 古生物学 生物
作者
Zhehan Shen,Chen Ling-zhi,Lilong Wang,Shunjie Dong,Fakai Wang,Yaning Pan,Jiahao Zhou,Yikun Wang,Xinxin Xu,Huanhuan Chong,Huimin Lin,Weixia Li,Ruokun Li,Huali Ma,Jing Ma,Yixing Yu,Lianjun Du,Xiaosong Wang,Shaoting Zhang,Fuhua Yan
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240531
摘要

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023). nnU-Net was used for lesion segmentation and LIFT for FLL classification. External testing was performed on data from three hospitals (January 2018-December 2023), with a prospective test set obtained from January 2024 to April 2024. Model performance was compared with radiologists and impact of model assistance on junior and senior radiologist performance was assessed. Evaluation metrics included the Dice similarity coefficient (DSC) and accuracy. Results A total of 2131 individuals with FLLs (mean age, 56 ± [SD] 12 years; 1476 female) were included in the training, internal test, external test, and prospective test sets. Average DSC values for liver and tumor segmentation across the three test sets were 0.98 and 0.96, respectively. Average accuracy for features and lesion classification across the three test sets were 93% and 97%, respectively. LIFT-assisted readings improved diagnostic accuracy (average 5.3% increase, P < .001), reduced reading time (average 34.5 seconds decrease, P < .001), and enhanced confidence (average 0.3-point increase, P < .001) of junior radiologists. Conclusion The proposed DL model accurately detected and classified FLLs, improving diagnostic accuracy and efficiency of junior radiologists. ©RSNA, 2025.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坤坤完成签到,获得积分10
刚刚
一王打尽发布了新的文献求助10
1秒前
脑洞疼应助吴语旭采纳,获得10
1秒前
Samuel_发布了新的文献求助10
2秒前
领导范儿应助cyndi采纳,获得10
2秒前
2秒前
搞怪元彤发布了新的文献求助200
2秒前
3秒前
4秒前
一只黑麂完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
cen完成签到,获得积分10
6秒前
7秒前
7秒前
dinglingling完成签到 ,获得积分10
7秒前
7秒前
okra发布了新的文献求助10
8秒前
sunny850完成签到,获得积分10
8秒前
所所应助sasa采纳,获得10
8秒前
科研通AI6应助淡然可冥采纳,获得10
8秒前
why发布了新的文献求助10
8秒前
8秒前
8秒前
大E深空发布了新的文献求助10
9秒前
星辰大海应助nano采纳,获得10
9秒前
十一完成签到,获得积分10
9秒前
9秒前
iNk应助LZ采纳,获得10
9秒前
虾滑丸子发布了新的文献求助10
10秒前
wuli发布了新的文献求助10
10秒前
xiaoxin123发布了新的文献求助10
10秒前
新手发布了新的文献求助10
10秒前
10秒前
11秒前
miao完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072516
求助须知:如何正确求助?哪些是违规求助? 4292847
关于积分的说明 13376248
捐赠科研通 4114022
什么是DOI,文献DOI怎么找? 2252800
邀请新用户注册赠送积分活动 1257561
关于科研通互助平台的介绍 1190352