亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aerodynamic data fusion for low-Reynolds-number compressors based on film-Re physics-guided multi-fidelity network

作者
Ruoyu Chen,Xun Ren,Mingyang Wang,Ziliang Li,Jingquan Zhao,Xingen Lu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (9)
标识
DOI:10.1063/5.0284884
摘要

Strong three-dimensional effects within low Reynolds number compressor cascades invalidate the assumption of turbulence isotropy, significantly reducing the accuracy of solving the Navier–Stokes equations using Reynolds-averaged Navier–Stokes (RANS) methods. Although large eddy simulation (LES) maintains high accuracy at low Reynolds numbers, it comes with substantially higher computational costs. Therefore, this study integrates RANS and LES samples to construct a variable-Re multi-fidelity dataset. Based on this, a film-Re physics-guided multi-fidelity network (FP–MFN) is developed to predict flow fields at Reynolds numbers beyond those used in the training set. The FP–MFN model consists of a low-fidelity network and a high-fidelity network, which are coupled in the loss function via a fidelity fusion coefficient. When the fidelity fusion coefficient is set to 0.5, the prediction demands of the two models reach an optimal balance, yielding the highest prediction accuracy. The FP–MFN model incorporates a Reynolds number modulation network in part of its hidden layers, enhancing its ability to learn the relationships between flow field structures and Reynolds number variations. This design substantially enhances the prediction accuracy of flow fields at Reynolds numbers unseen during training compared with conventional multi-fidelity networks. Furthermore, the FP–MFN incorporates a physics-guided loss term into the loss function, ensuring the physical consistency of predicted flow fields under previously unseen Reynolds conditions. The FP–MFN model accurately predicts flow separation in low-Reynolds-number compressor cascades under different loading conditions, highlighting its strong generalization capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
FashionBoy应助保持科研热情采纳,获得10
5秒前
mingjiang完成签到,获得积分10
14秒前
19秒前
22秒前
heisa发布了新的文献求助10
26秒前
27秒前
JamesPei应助保持科研热情采纳,获得10
45秒前
打打应助小小K采纳,获得10
50秒前
heisa完成签到,获得积分10
51秒前
高级牛马完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
ahh完成签到 ,获得积分10
1分钟前
雪白傲薇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小小K发布了新的文献求助10
1分钟前
1分钟前
月儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
gwbk完成签到,获得积分10
1分钟前
2分钟前
2分钟前
在水一方应助zz采纳,获得10
2分钟前
脑洞疼应助保持科研热情采纳,获得10
2分钟前
2分钟前
大个应助石榴汁的书采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
zz发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755464
求助须知:如何正确求助?哪些是违规求助? 5495379
关于积分的说明 15381261
捐赠科研通 4893498
什么是DOI,文献DOI怎么找? 2632181
邀请新用户注册赠送积分活动 1580024
关于科研通互助平台的介绍 1535869