亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discovering neural elastoplasticity from kinematic observations

作者
Georgios Barkoulis Gavris,WaiChing Sun
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (38): e2508732122-e2508732122 被引量:1
标识
DOI:10.1073/pnas.2508732122
摘要

Inferring accurate and precise material models necessary for high-fidelity predictions has been a central challenge in constitutive modeling. Both traditional regression methods and modern machine-learning approaches require specialized data labels, which often cannot be sufficiently obtained from experiments. This data demand makes many sophisticated models impractical for real-world problems. Improvements in digital image correlation techniques have enabled accurate measurements of displacement data, providing an alternative kinematics-based approach for model identification. However, for materials undergoing plastic deformation, fracture, and damage, the corresponding inverse problem could be inherently challenging due to the dependence on loading history. We overcome this by formulating an inverse problem to discover interpretable plasticity models parameterized by neural networks (NN) from kinematic observations, leveraging a differentiable simulator with a smooth constitutive update that enables backpropagation for the NN training. The ability to use kinematic observations to infer complex material models may pave the way for a massive generation of material models that can be game-changing for emerging applications such as the design of metamaterials, response surface analyses, and the design of experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘Pdm发布了新的文献求助10
5秒前
6秒前
无花果应助Marshall采纳,获得10
13秒前
20秒前
21秒前
Marshall发布了新的文献求助10
25秒前
幸运星完成签到 ,获得积分10
27秒前
木木发布了新的文献求助10
28秒前
32秒前
甜甜纸飞机完成签到 ,获得积分10
34秒前
37秒前
甜甜的紫菜完成签到 ,获得积分10
41秒前
46秒前
安静的yu完成签到 ,获得积分10
47秒前
48秒前
JOY完成签到 ,获得积分10
51秒前
52秒前
52秒前
Yuanyuan发布了新的文献求助10
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
搜集达人应助痴情的诗槐采纳,获得10
1分钟前
2分钟前
2分钟前
乾坤侠客LW完成签到,获得积分10
2分钟前
斯文败类应助司空天德采纳,获得10
2分钟前
小汽车滴滴滴完成签到,获得积分10
3分钟前
3分钟前
CodeCraft应助zzzz采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
zzzz发布了新的文献求助10
3分钟前
3分钟前
超级碧曼应助Wei采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788741
求助须知:如何正确求助?哪些是违规求助? 5711548
关于积分的说明 15473875
捐赠科研通 4916750
什么是DOI,文献DOI怎么找? 2646551
邀请新用户注册赠送积分活动 1594225
关于科研通互助平台的介绍 1548651