亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A regularized‐multi‐field optimization algorithm for robust IMPT

算法 领域(数学) 计算机科学 数学优化 数学 纯数学
作者
Ying Luo,Chao Wang,Ya‐Nan Zhu,Wangyao Li,Daniel E. Johnson,Yu-Ting Lin,David Akhavan,Krishna Reddy,Carolyn Savioz,Qiang Li,Hao Gao
出处
期刊:Medical Physics [Wiley]
卷期号:52 (8): e18046-e18046
标识
DOI:10.1002/mp.18046
摘要

Abstract Background Treatment planning in proton therapy aims to deliver a conformal dose to the target while sparing normal healthy tissues. However, the range uncertainty of CT values and patient motion during delivery may compromise both target dose coverage and organ‐at‐risk (OAR) sparing. Purpose This study proposes a novel optimization method, Regularized‐Multi‐Field Optimization (R‐MFO). R‐MFO which incorporates the single‐field uniform dose as a regularization term in the multi‐field optimization (MFO). The proposed method seeks to reduce the sensitivity to uncertainties while maintaining the high plan quality as MFO plans. Methods R‐MFO combines the uniform dose distribution with the flexibility of MFO plans through an iterative process. Specifically, a dose equality constraint in the target volume for each field is introduced as a regularized term in the conventional MFO at every certain iteration. Robust optimization is performed with the range uncertainty of 3.5% and setup uncertainty of 3mm for the head and neck (HN) case and 5mm for the liver and lung cases. Due to the nonconvex constraints associated with minimum monitor unit (MMU) and active set, R‐MFO optimization is solved by iterative convex relaxation (ICR) and alternating direction method of multipliers (ADMM) algorithms. To demonstrate the effectiveness of our proposed R‐MFO, plan quality and robustness are compared with R‐MFO, MFO, and single‐field optimizations (SFO) across three clinical cases: HN, liver, and lung. Results R‐MFO demonstrated significantly enhanced robustness compared to MFO, with narrower uncertainty bands (e.g., RV 95 : 7.8–10.0 vs. 9.6–10.5) and superior high‐dose tail performance, though slightly inferior to SFO in RV 100 (26.2–31.5 vs. 19.2–26.9). Plan quality analysis revealed R‐MFO achieved higher conformity indices (CI: 0.65–0.79) and improved dose coverage (D 95 ≥99.15%, D max ≤111.90%) compared to SFO, approaching MFO performance. For OARs, both MFO and R‐MFO reduced esophageal D max , D mean , and D 5cc in the lung case by leveraging dose distribution flexibility. However, R‐MFO incurred the longest computational time due to comprehensive voxel‐level optimization, whereas MFO remained the most time‐efficient. Conclusions The proposed R‐MFO method successfully integrates the uniform dose characteristics of SFO with the flexibility of MFO, achieving enhanced robustness compared to MFO and superior plan quality compared to SFO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咩咩完成签到,获得积分10
4秒前
8秒前
你好完成签到 ,获得积分0
14秒前
17秒前
迷人的盼易完成签到,获得积分10
18秒前
qq发布了新的文献求助10
21秒前
叶子完成签到,获得积分10
26秒前
海派Hi完成签到 ,获得积分10
33秒前
忐忑的烤鸡完成签到,获得积分10
41秒前
斯文的访烟完成签到,获得积分10
44秒前
50秒前
叽了咕噜应助li采纳,获得10
54秒前
55秒前
长歌发布了新的文献求助10
56秒前
Hhh完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Jasper应助长歌采纳,获得10
1分钟前
sulin完成签到 ,获得积分10
1分钟前
Moweikang完成签到,获得积分10
1分钟前
秋祭应助iorpi采纳,获得10
1分钟前
泷云完成签到,获得积分10
1分钟前
三千发布了新的文献求助10
1分钟前
深海菠萝完成签到,获得积分10
1分钟前
满意涵梅完成签到 ,获得积分10
1分钟前
上善若水呦完成签到 ,获得积分10
1分钟前
寻道图强完成签到,获得积分0
1分钟前
1分钟前
Saadiya发布了新的文献求助10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
江南之南完成签到 ,获得积分10
1分钟前
叶子完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
西蓝花战士完成签到 ,获得积分10
1分钟前
自由的松完成签到 ,获得积分10
1分钟前
lijingyi发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701351
关于积分的说明 14913380
捐赠科研通 4747722
什么是DOI,文献DOI怎么找? 2549198
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049