A regularized‐multi‐field optimization algorithm for robust IMPT

算法 领域(数学) 计算机科学 数学优化 数学 纯数学
作者
Ying Luo,Chao Wang,Ya‐Nan Zhu,Wangyao Li,Daniel E. Johnson,Yu-Ting Lin,David Akhavan,Krishna Reddy,Carolyn Savioz,Qiang Li,Hao Gao
出处
期刊:Medical Physics [Wiley]
卷期号:52 (8): e18046-e18046
标识
DOI:10.1002/mp.18046
摘要

Abstract Background Treatment planning in proton therapy aims to deliver a conformal dose to the target while sparing normal healthy tissues. However, the range uncertainty of CT values and patient motion during delivery may compromise both target dose coverage and organ‐at‐risk (OAR) sparing. Purpose This study proposes a novel optimization method, Regularized‐Multi‐Field Optimization (R‐MFO). R‐MFO which incorporates the single‐field uniform dose as a regularization term in the multi‐field optimization (MFO). The proposed method seeks to reduce the sensitivity to uncertainties while maintaining the high plan quality as MFO plans. Methods R‐MFO combines the uniform dose distribution with the flexibility of MFO plans through an iterative process. Specifically, a dose equality constraint in the target volume for each field is introduced as a regularized term in the conventional MFO at every certain iteration. Robust optimization is performed with the range uncertainty of 3.5% and setup uncertainty of 3mm for the head and neck (HN) case and 5mm for the liver and lung cases. Due to the nonconvex constraints associated with minimum monitor unit (MMU) and active set, R‐MFO optimization is solved by iterative convex relaxation (ICR) and alternating direction method of multipliers (ADMM) algorithms. To demonstrate the effectiveness of our proposed R‐MFO, plan quality and robustness are compared with R‐MFO, MFO, and single‐field optimizations (SFO) across three clinical cases: HN, liver, and lung. Results R‐MFO demonstrated significantly enhanced robustness compared to MFO, with narrower uncertainty bands (e.g., RV 95 : 7.8–10.0 vs. 9.6–10.5) and superior high‐dose tail performance, though slightly inferior to SFO in RV 100 (26.2–31.5 vs. 19.2–26.9). Plan quality analysis revealed R‐MFO achieved higher conformity indices (CI: 0.65–0.79) and improved dose coverage (D 95 ≥99.15%, D max ≤111.90%) compared to SFO, approaching MFO performance. For OARs, both MFO and R‐MFO reduced esophageal D max , D mean , and D 5cc in the lung case by leveraging dose distribution flexibility. However, R‐MFO incurred the longest computational time due to comprehensive voxel‐level optimization, whereas MFO remained the most time‐efficient. Conclusions The proposed R‐MFO method successfully integrates the uniform dose characteristics of SFO with the flexibility of MFO, achieving enhanced robustness compared to MFO and superior plan quality compared to SFO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanshuwen完成签到,获得积分20
1秒前
1秒前
李荷花完成签到 ,获得积分10
2秒前
嘿嘿嘿完成签到,获得积分10
2秒前
junru发布了新的文献求助10
2秒前
长情靖雁发布了新的文献求助10
4秒前
5秒前
小二发布了新的文献求助10
5秒前
追寻的大米完成签到,获得积分20
5秒前
义气完成签到 ,获得积分10
6秒前
6秒前
9秒前
9秒前
梁海萍发布了新的文献求助10
9秒前
10秒前
追风完成签到,获得积分10
11秒前
Isabel完成签到 ,获得积分10
12秒前
瓜瓜发布了新的文献求助20
13秒前
chrysophoron发布了新的文献求助10
15秒前
科研混子完成签到,获得积分10
17秒前
清颜发布了新的文献求助10
19秒前
21秒前
浮游应助vchen0621采纳,获得10
21秒前
21秒前
1111完成签到 ,获得积分10
22秒前
22秒前
23秒前
无语完成签到,获得积分10
23秒前
24秒前
丘比特应助瓜瓜采纳,获得10
24秒前
卡皮巴拉完成签到 ,获得积分10
24秒前
25秒前
胡兴发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
王路发布了新的文献求助10
27秒前
chen发布了新的文献求助10
27秒前
科研通AI5应助Estrella采纳,获得10
28秒前
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208359
求助须知:如何正确求助?哪些是违规求助? 4385928
关于积分的说明 13659138
捐赠科研通 4244820
什么是DOI,文献DOI怎么找? 2328952
邀请新用户注册赠送积分活动 1326741
关于科研通互助平台的介绍 1278980