亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Designing of low band gap organic semiconductors through data mining from multiple databases and machine learning assisted property prediction

财产(哲学) 计算机科学 数据库 半导体 情报检索 数据挖掘 人工智能 材料科学 光电子学 认识论 哲学
作者
Muhammad Saqib,Mashal Rani,Tayyaba Mubashir,Mudassir Hussain Tahir,Momina Maryam,Afifa Mushtaq,Rafia Razzaq,Mohamed A. El‐Sheikh,Hosam O. Elansary
出处
期刊:Optical Materials [Elsevier]
卷期号:150: 115295-115295 被引量:9
标识
DOI:10.1016/j.optmat.2024.115295
摘要

Bandgap is a key parameter for selecting suitable materials for a broad range of applications. Organic solar cells (OSCs) are emerging as powerful devices due to their low-cost solution processing. Developing OSCs necessitates producing effective materials in a computationally cost-effective and rapid manner. Machine learning has become popular and well-recognized among researchers to screen and design high performance materials for OSCs. Machine learning models require data from the literature (reported studies or databases) to effectively predict targeted properties. To unveil the hidden dataset patterns, a thorough data visualization analysis is conducted. Importantly, multiple database mining is performed for designing low band gap organic semiconductors. Molecular descriptors are utilized to train machine learning models. Importantly, about 22 different machine learning models are tested. Among all models, extra trees regressor shows higher predictive capability. Residuals, learning curve and validation curve are also drawn for extra trees regressor. Feature importance analysis determines the significance of the features. Moreover, library enumeration and similarity analysis further facilitate designing of high-performance semiconductor materials. This work may help in screening and designing efficient semiconductors having low band gap for increasing the efficiency of OSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
18秒前
研友_Zlepz8发布了新的文献求助50
48秒前
陆斑马完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
大脸猫4811发布了新的文献求助10
2分钟前
Jasper应助ZH的天方夜谭采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
4分钟前
sssshhhaa发布了新的文献求助10
4分钟前
maher完成签到,获得积分10
4分钟前
sssshhhaa完成签到,获得积分10
4分钟前
FashionBoy应助sssshhhaa采纳,获得10
4分钟前
4分钟前
5分钟前
bkagyin应助橘子采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502956
求助须知:如何正确求助?哪些是违规求助? 4598639
关于积分的说明 14464705
捐赠科研通 4532278
什么是DOI,文献DOI怎么找? 2483876
邀请新用户注册赠送积分活动 1467084
关于科研通互助平台的介绍 1439775