清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficient Group Collaboration for Sensing Time Redundancy Optimization in Mobile Crowd Sensing

计算机科学 冗余(工程) 激励 任务(项目管理) 众包 基线(sea) 集合(抽象数据类型) 工程类 万维网 操作系统 程序设计语言 海洋学 系统工程 经济 微观经济学 地质学
作者
Guisong Yang,Jian Sang,Hanqing Li,Xingyu He,Fanglei Sun,Jiangtao Wang,Haris Pervaiz
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 26091-26103 被引量:1
标识
DOI:10.1109/jiot.2024.3393532
摘要

In mobile crowd sensing (MCS), complex tasks often require collaboration among multiple workers with diverse expertise and sensors. However, few studies consider the sensing time redundancy of multiple workers to complete a task collaboratively, and the subjective and objective collaboration willingness of participating workers in forming collaboration groups for different tasks. If solely focusing on enhancing workers' willingness to collaborate, it cannot guarantee the minimum time redundancy within the collaboration group, resulting in a decrease in the group's efficiency. Similarly, if only aiming to reduce sensing time redundancy among the workers in the collaboration group, it may lead to a loss of workers' willingness to collaborate, and the diminished motivation among workers will consequently reduce the group's efficiency. To address these challenges, this paper proposes EGC-STRO, a method for forming efficient collaboration groups in MCS that optimizes sensing time redundancy while balancing the workers' cooperation willingness as constraints. First, this method proposes an evaluation indicator to select workers who meet their reward expectations, i.e., objective collaboration willingness, and uses an incentive mechanism based on bargaining game to maximize the overall interests. Furthermore, subjective collaboration willingness is defined and a collaboration worker selection algorithm is designed. The algorithm adds workers who meet both subjective and objective willingness requirements to the candidate set and selects workers with the smallest sensing redundancy time in the worker candidate set to join the final collaboration group. Simulation results demonstrate that compared with the baseline methods, our proposed EGC-STRO increases the worker engagement by about 5%-20%, increases the task coverage by 6%-25%, increases the platform utility by 17%-50%, and increases the worker utility by 20%-60%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flj7038完成签到,获得积分10
8秒前
zhdjj完成签到 ,获得积分10
11秒前
xiaxiao完成签到,获得积分0
41秒前
44秒前
zijingsy完成签到 ,获得积分10
48秒前
54秒前
huiluowork完成签到 ,获得积分10
57秒前
1分钟前
weijie完成签到,获得积分10
1分钟前
1分钟前
1分钟前
赛韓吧完成签到 ,获得积分10
1分钟前
1分钟前
小胖完成签到 ,获得积分10
1分钟前
Lexi完成签到 ,获得积分10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
digger2023完成签到 ,获得积分10
2分钟前
深情海秋完成签到,获得积分10
2分钟前
天真依玉完成签到,获得积分10
2分钟前
开放访天完成签到 ,获得积分10
2分钟前
庄海棠完成签到 ,获得积分10
2分钟前
zhao完成签到,获得积分10
2分钟前
2分钟前
3分钟前
迅速千愁完成签到 ,获得积分10
3分钟前
3分钟前
helpme完成签到,获得积分10
3分钟前
3分钟前
fogsea完成签到,获得积分0
3分钟前
吹皱一湖春水完成签到 ,获得积分10
3分钟前
Oliver完成签到 ,获得积分10
4分钟前
Wen完成签到 ,获得积分10
4分钟前
cadcae完成签到,获得积分10
4分钟前
CYT完成签到,获得积分10
4分钟前
眯眯眼的安雁完成签到 ,获得积分10
4分钟前
al完成签到 ,获得积分10
4分钟前
聪慧的迎夏完成签到,获得积分10
4分钟前
得得发布了新的文献求助10
4分钟前
5分钟前
不想长大完成签到 ,获得积分10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244272
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541