结构工程
开阔视野
残余物
屈曲
增量动力分析
屋顶
危害
能量(信号处理)
计算机科学
工程类
地震分析
数学
有限元法
算法
统计
化学
有机化学
作者
Taonian Shan,Eric M. Lui
出处
期刊:CivilEng
[MDPI AG]
日期:2024-04-15
卷期号:5 (2): 343-377
被引量:1
标识
DOI:10.3390/civileng5020018
摘要
This paper describes the development of a dual hazard spectrum for use in the dynamic analysis of steel frames subject to the combined effects of earthquakes and wind. The proposed spectrum is obtained by combining the power spectra of earthquakes and wind using the square root of the sum of squares (SRSS) combination method. An equivalent time excitation function is then computed using an inverse fast Fourier transform (IFFT) and serves as input for the dynamic analysis. Using time-history analysis on the OpenSees platform, the dynamic responses expressed in terms of peak and residual inter-story and roof drifts for two multistory steel frames located in two US cities (Los Angeles and Charleston) are obtained to demonstrate that designing these buildings based on just one hazard may not be adequate. For frames that are considered under-designed, an energy-based design procedure that uses buckling-restrained braces (BRBs) to dissipate the excess energy imparted to these frames is proposed so they will satisfy the FEMA 356 recommended drift limits for the performance levels of immediate occupancy and life safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI