Graph Structure Enhanced Pre-Training Language Model for Knowledge Graph Completion

计算机科学 图形 人工智能 自然语言处理 理论计算机科学
作者
Huashi Zhu,Dexuan Xu,Yu Huang,Zhi Jin,Weiping Ding,Jiahui Tong,Guoshuang Chong
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2697-2708 被引量:16
标识
DOI:10.1109/tetci.2024.3372442
摘要

A vast amount of textual and structural information is required for knowledge graph construction and its downstream tasks. However, most of the current knowledge graphs are incomplete due to the difficulty of knowledge acquisition and integration. Knowledge Graph Completion (KGC) is used to predict missing connections. In previous studies, textual information and graph structural information are utilized independently, without an effective method for fusing these two types of information. In this paper, we propose a graph structure enhanced pre-training language model for knowledge graph completion. Firstly, we design a graph sampling algorithm and a Graph2Seq module for constructing sub-graphs and their corresponding contexts to support large-scale knowledge graph learning and parallel training. It is also the basis for fusing textual data and graph structure. Next, two pre-training tasks based on masked modeling are designed for capturing accurate entity-level and relation-level information. Furthermore, this paper proposes a novel asymmetric Encoder-Decoder architecture to restore masked components, where the encoder is a Pre-trained Language Model (PLM) and the decoder is a multi-relational Graph Neural Network (GNN). The purpose of the architecture is to integrate textual information effectively with graph structural information. Finally, the model is fine-tuned for KGC tasks on two widely used public datasets. The experiments show that the model achieves excellent performance and outperforms baselines in most metrics, which demonstrate the effectiveness of our approach by fusing the structure and semantic information to knowledge graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cf2v应助吨吨采纳,获得10
2秒前
zakarya发布了新的文献求助10
2秒前
3秒前
北风发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
鱼儿想游发布了新的文献求助10
4秒前
22222发布了新的文献求助10
6秒前
6秒前
LLLLLL完成签到,获得积分10
6秒前
103921wjk发布了新的文献求助10
8秒前
醒醒发布了新的文献求助10
9秒前
上官枫发布了新的文献求助10
10秒前
莫友安完成签到 ,获得积分10
11秒前
Wyoou完成签到,获得积分10
12秒前
飞跃雁山院完成签到,获得积分10
12秒前
zyznh完成签到 ,获得积分10
13秒前
chen7完成签到,获得积分10
13秒前
mao完成签到,获得积分10
14秒前
义气的从蕾完成签到 ,获得积分10
15秒前
bluelemon完成签到,获得积分10
17秒前
研友_VZG7GZ应助庾稀采纳,获得10
18秒前
18秒前
YSM完成签到,获得积分0
18秒前
费老五完成签到 ,获得积分10
19秒前
华仔应助上官枫采纳,获得10
21秒前
彭于晏应助紫陌采纳,获得10
22秒前
23秒前
ding应助666采纳,获得10
24秒前
小蘑菇应助醒醒采纳,获得10
25秒前
搜集达人应助李奶奶采纳,获得10
25秒前
Sean发布了新的文献求助10
25秒前
如意板栗发布了新的文献求助30
28秒前
耶耶耶完成签到 ,获得积分10
28秒前
29秒前
Sean完成签到,获得积分10
32秒前
37秒前
缓慢的语琴完成签到 ,获得积分10
42秒前
饱满语风发布了新的文献求助10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780043
求助须知:如何正确求助?哪些是违规求助? 3325422
关于积分的说明 10222930
捐赠科研通 3040579
什么是DOI,文献DOI怎么找? 1668903
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614