Beyond Bilinear: Generalized Multimodal Factorized High-Order Pooling for Visual Question Answering

联营 计算机科学 判别式 答疑 人工智能 情态动词 特征(语言学) 双线性插值 分歧(语言学) 模式识别(心理学) 图像(数学) 功能(生物学) 机器学习 计算机视觉 哲学 生物 化学 高分子化学 进化生物学 语言学
作者
Yu Zhou,Jun Yu,Chenchao Xiang,Jianping Fan,Dacheng Tao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (12): 5947-5959 被引量:509
标识
DOI:10.1109/tnnls.2018.2817340
摘要

Visual question answering (VQA) is challenging because it requires a simultaneous understanding of both visual content of images and textual content of questions. To support the VQA task, we need to find good solutions for the following three issues: 1) fine-grained feature representations for both the image and the question; 2) multi-modal feature fusion that is able to capture the complex interactions between multi-modal features; 3) automatic answer prediction that is able to consider the complex correlations between multiple diverse answers for the same question. For fine-grained image and question representations, a `co-attention' mechanism is developed by using a deep neural network architecture to jointly learn the attentions for both the image and the question, which can allow us to reduce the irrelevant features effectively and obtain more discriminative features for image and question representations. For multi-modal feature fusion, a generalized Multi-modal Factorized High-order pooling approach (MFH) is developed to achieve more effective fusion of multi-modal features by exploiting their correlations sufficiently, which can further result in superior VQA performance as compared with the state-of-the-art approaches. For answer prediction, the KL (Kullback-Leibler) divergence is used as the loss function to achieve precise characterization of the complex correlations between multiple diverse answers with the same or similar meaning, which can allow us to achieve faster convergence rate and obtain slightly better accuracy on answer prediction. A deep neural network architecture is designed to integrate all these aforementioned modules into a unified model for achieving superior VQA performance. With an ensemble of our MFH models, we achieve the state-of-the-art performance on the large-scale VQA datasets and win the runner-up in VQA Challenge 2017.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芳华如梦完成签到 ,获得积分10
2秒前
2秒前
2秒前
YY完成签到 ,获得积分10
3秒前
小半个菠萝完成签到,获得积分10
3秒前
3秒前
娜行完成签到 ,获得积分10
3秒前
4秒前
Morgen发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
哈哈哈发布了新的文献求助10
5秒前
5秒前
洪旺旺完成签到 ,获得积分10
5秒前
colaice发布了新的文献求助10
5秒前
大个应助梁业采纳,获得10
6秒前
7秒前
wanci应助小孩儿采纳,获得30
7秒前
咖褐完成签到,获得积分10
8秒前
科研牛马完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
Morgen完成签到,获得积分20
9秒前
zhl发布了新的文献求助10
9秒前
重要手机完成签到 ,获得积分10
10秒前
星辰大海应助colaice采纳,获得10
10秒前
10秒前
11秒前
hcy发布了新的文献求助10
11秒前
小葡萄完成签到 ,获得积分10
13秒前
冰魂应助99v587采纳,获得10
13秒前
zhonghbush发布了新的文献求助10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843639
求助须知:如何正确求助?哪些是违规求助? 3385923
关于积分的说明 10542998
捐赠科研通 3106709
什么是DOI,文献DOI怎么找? 1711095
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774383