水准点(测量)
对数
优化算法
非线性系统
鲸鱼
数学优化
趋同(经济学)
算法
计算机科学
二次方程
人口
数学
控制理论(社会学)
控制(管理)
人工智能
几何学
量子力学
大地测量学
渔业
地理
经济
人口学
社会学
数学分析
经济增长
物理
生物
标识
DOI:10.1051/matecconf/201713900157
摘要
Whale optimization algorithm (WOA) is a relatively novel intelligence optimization technique which has been shown to be competitive to other population-based algorithms. However, the control parameter a is a major factor to affect the algorithm’s convergence precision and speed. At present, few of them are aiming at control parameter setting in WOA algorithm. This paper proposes corresponding improved WOA algorithm with different nonlinear adjustment strategy of control parameter a by adopting sinusoid, cosine, tangential, logarithmic and quadratic curves. The experimental results for six benchmark test functions show that the proposed nonlinear adjustment strategies are superior to the classical linear strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI