Deep generative learning for automated EHR diagnosis of traditional Chinese medicine

计算机科学 深信不疑网络 人工智能 机器学习 决策树 深度学习 支持向量机 集合(抽象数据类型) 监督学习 数据集 特征工程 特征学习 数据挖掘 人工神经网络 程序设计语言
作者
Zhaohui Liang,Jun Liu,Aihua Ou,Honglai Zhang,Ziping Li,Jimmy Xiangji Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:174: 17-23 被引量:31
标识
DOI:10.1016/j.cmpb.2018.05.008
摘要

Computer-aided medical decision-making (CAMDM) is the method to utilize massive EMR data as both empirical and evidence support for the decision procedure of healthcare activities. Well-developed information infrastructure, such as hospital information systems and disease surveillance systems, provides abundant data for CAMDM. However, the complexity of EMR data with abstract medical knowledge makes the conventional model incompetent for the analysis. Thus a deep belief networks (DBN) based model is proposed to simulate the information analysis and decision-making procedure in medical practice. The purpose of this paper is to evaluate a deep learning architecture as an effective solution for CAMDM.A two-step model is applied in our study. At the first step, an optimized seven-layer deep belief network (DBN) is applied as an unsupervised learning algorithm to perform model training to acquire feature representation. Then a support vector machine model is adopted to DBN at the second step of the supervised learning. There are two data sets used in the experiments. One is a plain text data set indexed by medical experts. The other is a structured dataset on primary hypertension. The data are randomly divided to generate the training set for the unsupervised learning and the testing set for the supervised learning. The model performance is evaluated by the statistics of mean and variance, the average precision and coverage on the data sets. Two conventional shallow models (support vector machine / SVM and decision tree / DT) are applied as the comparisons to show the superiority of our proposed approach.The deep learning (DBN + SVM) model outperforms simple SVM and DT on two data sets in terms of all the evaluation measures, which confirms our motivation that the deep model is good at capturing the key features with less dependence when the index is built up by manpower.Our study shows the two-step deep learning model achieves high performance for medical information retrieval over the conventional shallow models. It is able to capture the features of both plain text and the highly-structured database of EMR data. The performance of the deep model is superior to the conventional shallow learning models such as SVM and DT. It is an appropriate knowledge-learning model for information retrieval of EMR system. Therefore, deep learning provides a good solution to improve the performance of CAMDM systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stella发布了新的文献求助10
刚刚
Owen应助无辜的醉波采纳,获得10
3秒前
3秒前
高贵碧凡完成签到,获得积分10
4秒前
4秒前
4秒前
李健应助简单的思远采纳,获得10
5秒前
古琴残梦发布了新的文献求助10
5秒前
5秒前
勤恳的德地完成签到,获得积分10
7秒前
JamesPei应助ahoshuo采纳,获得10
7秒前
8秒前
GGBOND完成签到,获得积分10
8秒前
8秒前
9秒前
Potato123123完成签到 ,获得积分10
10秒前
Hou发布了新的文献求助10
10秒前
Suo发布了新的文献求助10
11秒前
Jasper应助Sakura采纳,获得10
11秒前
Mmmmarys发布了新的文献求助10
11秒前
12秒前
13秒前
adfadwadad完成签到 ,获得积分10
14秒前
kk发布了新的文献求助10
14秒前
14秒前
sihongyi发布了新的文献求助10
16秒前
17秒前
17秒前
陈政豪发布了新的文献求助10
17秒前
Mine_cherry应助...采纳,获得30
19秒前
鸣蜩阿六完成签到,获得积分10
19秒前
六子发布了新的文献求助10
20秒前
Tperm发布了新的文献求助10
21秒前
Orange应助surain采纳,获得10
21秒前
搜集达人应助kk采纳,获得10
21秒前
迷失自我的麻瓜完成签到,获得积分10
21秒前
sophia完成签到,获得积分10
24秒前
小巧向秋发布了新的文献求助10
24秒前
25秒前
28秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655