Deep generative learning for automated EHR diagnosis of traditional Chinese medicine

计算机科学 深信不疑网络 人工智能 机器学习 决策树 深度学习 支持向量机 集合(抽象数据类型) 监督学习 数据集 特征工程 特征学习 数据挖掘 人工神经网络 程序设计语言
作者
Zhaohui Liang,Jun Liu,Aihua Ou,Honglai Zhang,Ziping Li,Jimmy Xiangji Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:174: 17-23 被引量:24
标识
DOI:10.1016/j.cmpb.2018.05.008
摘要

Computer-aided medical decision-making (CAMDM) is the method to utilize massive EMR data as both empirical and evidence support for the decision procedure of healthcare activities. Well-developed information infrastructure, such as hospital information systems and disease surveillance systems, provides abundant data for CAMDM. However, the complexity of EMR data with abstract medical knowledge makes the conventional model incompetent for the analysis. Thus a deep belief networks (DBN) based model is proposed to simulate the information analysis and decision-making procedure in medical practice. The purpose of this paper is to evaluate a deep learning architecture as an effective solution for CAMDM.A two-step model is applied in our study. At the first step, an optimized seven-layer deep belief network (DBN) is applied as an unsupervised learning algorithm to perform model training to acquire feature representation. Then a support vector machine model is adopted to DBN at the second step of the supervised learning. There are two data sets used in the experiments. One is a plain text data set indexed by medical experts. The other is a structured dataset on primary hypertension. The data are randomly divided to generate the training set for the unsupervised learning and the testing set for the supervised learning. The model performance is evaluated by the statistics of mean and variance, the average precision and coverage on the data sets. Two conventional shallow models (support vector machine / SVM and decision tree / DT) are applied as the comparisons to show the superiority of our proposed approach.The deep learning (DBN + SVM) model outperforms simple SVM and DT on two data sets in terms of all the evaluation measures, which confirms our motivation that the deep model is good at capturing the key features with less dependence when the index is built up by manpower.Our study shows the two-step deep learning model achieves high performance for medical information retrieval over the conventional shallow models. It is able to capture the features of both plain text and the highly-structured database of EMR data. The performance of the deep model is superior to the conventional shallow learning models such as SVM and DT. It is an appropriate knowledge-learning model for information retrieval of EMR system. Therefore, deep learning provides a good solution to improve the performance of CAMDM systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娅娃儿完成签到 ,获得积分10
刚刚
wlscj应助小杨采纳,获得50
4秒前
Slava完成签到 ,获得积分10
5秒前
5秒前
王旭完成签到,获得积分10
12秒前
鹰击长空发布了新的文献求助10
13秒前
billkin完成签到,获得积分10
17秒前
单薄乐珍完成签到 ,获得积分0
17秒前
她的城完成签到,获得积分0
17秒前
Ye完成签到,获得积分10
18秒前
shadow完成签到,获得积分10
21秒前
AllRightReserved完成签到 ,获得积分10
26秒前
张来完成签到 ,获得积分10
29秒前
Hijay完成签到,获得积分10
31秒前
快乐觅露完成签到 ,获得积分10
31秒前
一路朝阳完成签到 ,获得积分10
33秒前
青云完成签到 ,获得积分10
35秒前
淡定的惜完成签到,获得积分10
46秒前
cc完成签到,获得积分10
47秒前
50秒前
宋坤完成签到,获得积分10
51秒前
ho发布了新的文献求助30
51秒前
53秒前
有血条就敢上完成签到 ,获得积分10
54秒前
拾壹完成签到,获得积分10
57秒前
娜娜完成签到 ,获得积分10
59秒前
小小怪完成签到 ,获得积分10
1分钟前
Nnnky完成签到 ,获得积分10
1分钟前
养猪大户完成签到 ,获得积分10
1分钟前
凡事发生必有利于我完成签到,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
愉快无心完成签到 ,获得积分10
1分钟前
hwa完成签到,获得积分10
1分钟前
fomo完成签到,获得积分10
1分钟前
darcy完成签到,获得积分10
1分钟前
幸福妙柏完成签到 ,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
英俊的铭应助朝圣者采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293860
求助须知:如何正确求助?哪些是违规求助? 4443921
关于积分的说明 13831743
捐赠科研通 4327836
什么是DOI,文献DOI怎么找? 2375755
邀请新用户注册赠送积分活动 1371023
关于科研通互助平台的介绍 1336043