已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improvement of Prediction Models for Nondestructive Detection of TVB-N Using Dual-Band Vis/NIR Spectroscopic Technique

偏最小二乘回归 蒙特卡罗方法 谱线 近红外光谱 采样(信号处理) 光谱带 光谱学 数学 光学 生物系统 分析化学(期刊) 统计 化学 物理 量子力学 天文 探测器 生物 色谱法
作者
Wenxiu Wang,Yankun Peng
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:60 (4): 1075-1082 被引量:4
标识
DOI:10.13031/trans.12092
摘要

Abstract. This article discusses the influence of light source and band selection on prediction model performance. Two spectra acquisition systems for visible (Vis) and near-infrared (NIR) spectroscopy with a ring light source and a point light source were set up and compared based on the coefficient of variation (CV), signal-to-noise ratio (SNR), spectrum area change rate (ACR), and model results. Reflectance spectra of 61 pork samples were collected, and anomalous samples were eliminated by Monte Carlo method based on model cluster analysis. Partial least squares (PLS) models for total volatile basic nitrogen (TVB-N) based on a single spectral region (350-1100 nm or 1000-2500 nm) and a dual spectral region (350-2500 nm) were built to compare the influence of band choice. Based on the optimal chosen band, characteristic wavelengths were selected by competitive adaptive reweighted sampling (CARS), and a new PLS model was established. The results showed that spectra acquired with the ring light source had better stability and achieved optimal prediction models. The dual spectral region, which contained more comprehensive information on TVB-N, yielded better results than any single spectral region. Based on the dual-band spectra, a simplified PLS model using feature variables achieved a coefficient of determination in the prediction set (R p 2 ) of 0.8767 and standard error of prediction (SEP) of 2.8354 mg per 100 g. The results demonstrated that the choice of light source and modeling band had great influence on prediction results, and improvement of models would promote the application of Vis/NIR spectroscopy in on-line or portable detection. Keywords: Band selection, Light source, Nondestructive detection, Pork, TVB-N, Vis/NIR spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
可爱的函函应助小星采纳,获得10
1秒前
王小丹完成签到,获得积分10
1秒前
枫威完成签到 ,获得积分10
2秒前
小蘑菇应助精明一寡采纳,获得10
2秒前
zhb关注了科研通微信公众号
2秒前
岂曰无衣完成签到 ,获得积分10
2秒前
kyn发布了新的文献求助10
3秒前
石远夫发布了新的文献求助10
4秒前
烟花应助十一采纳,获得10
5秒前
白华苍松发布了新的文献求助20
6秒前
zz发布了新的文献求助10
6秒前
莫斯完成签到 ,获得积分10
6秒前
一颗葡萄完成签到 ,获得积分10
7秒前
8秒前
彭于晏应助酷酷的小张采纳,获得10
8秒前
朱信姿完成签到,获得积分10
8秒前
王文艺发布了新的文献求助10
9秒前
vvei完成签到,获得积分10
10秒前
10秒前
Spike完成签到,获得积分10
12秒前
13秒前
陶醉飞烟发布了新的文献求助10
14秒前
落叶完成签到,获得积分10
14秒前
英姑应助kyn采纳,获得10
15秒前
15秒前
wanci应助BioGO采纳,获得10
15秒前
馒头给馒头的求助进行了留言
16秒前
小星发布了新的文献求助10
17秒前
18秒前
科目三应助落叶采纳,获得10
19秒前
孙嘉遇发布了新的文献求助10
19秒前
赘婿应助白华苍松采纳,获得10
19秒前
Liangyong_Fu完成签到 ,获得积分10
20秒前
搜集达人应助xvan采纳,获得10
21秒前
Msure发布了新的文献求助10
21秒前
机灵的幼菱完成签到,获得积分10
22秒前
22秒前
爆米花应助杨杨采纳,获得10
23秒前
24秒前
天天快乐应助欠虐宝宝采纳,获得10
25秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502249
求助须知:如何正确求助?哪些是违规求助? 4598249
关于积分的说明 14463199
捐赠科研通 4531818
什么是DOI,文献DOI怎么找? 2483625
邀请新用户注册赠送积分活动 1466915
关于科研通互助平台的介绍 1439528